July 12, 2016

United States Environmental Protection Agency ("USEPA") Region 1 Water Technical Unit (SMR-04) 5 Post Office Square, Suite 100 Boston, Massachusetts 02109-3912

Re: Initial Whole Effluent Toxicity ("WET") Testing

Veolia Energy North America Kendall Green Energy LLC 265 First Street Cambridge, MA 02142 NPDES Permit No. MA0004898

To Whom It May Concern:

AMEC Massachusetts, Inc. ("AMEC"), on behalf of Kendall Green Energy LLC ("Kendall"), is providing this notification of WET testing as required in the facility's National Pollutant Discharge Elimination System ("NPDES") permit Effective on February 1, 2011.

Per the requirements of Part I.A. Effluent Limitations and Monitoring Requirements of Kendall's NPDES Permit, WET testing results were as follows:

Acute Toxicity Evaluation

Species	LC-50 48 Hours
C. dubia	>100%
P. promelas	>100%

Chronic Toxicity Evaluation

Species	C-NOEC
C. dubia	25%
P. promelas	100%

These tests followed the requirements of Attachment C1 for freshwater species due to the salinity of the intake water being less than one part per trillion.

 LC_{50} is the concentration of a sample that causes mortality of 50% of the test population at a specific time of observation. So, if the LC_{50} is >100% effluent, less than 50% of the organisms may die from undiluted discharge from the facility. Therefore, an LC_{50} of >100% is the best result achievable for this parameter.

Chronic (Long-term Exposure Test) - No Observed Effect Concentration ("C-NOEC") is the

highest tested concentration of an effluent or a toxicant at which no adverse effects are observed on the aquatic test organisms at a specified time of observation. So, if the C-NOEC is >100%, no effects from long term exposure were observed from undiluted discharge from the facility. This is the best result achievable for this parameter. The C-NOEC of 25% shows that some of the organisms may have been affected at a 25% concentration of facility discharge. The 25% C-NOEC result is not optimum, but the other results are also taken into consideration when reviewing as a whole. Note - there were some anomalies in this portion of the analysis that may have resulted in the lower C-NOEC. The following anomalies were identified by the testing laboratory:

- C. dubia disappeared in two of the sample replicates
- P. Promelas was inadvertently killed
- C. dubia had a non-standard percent survival of 0% at 100% test concentration

In AMEC's opinion; the facility is in compliance with pollutants that have permit limits; the LC_{50} of >100% indicates that less than 50% of organisms died from undiluted discharge; the C-NOEC at >100% shows no effect from undiluted discharge; and the C-NOEC at 25% shows there may have been some impact on the organism, but this may have been effected by anomalies in the testing. Therefore, these results appear to be favorable and should be considered a pass by USEPA. Also, results from Q3, 2015 (100%), Q4 2015 (100%) and Q1 2016 (50%) C. dubia C-NOEC show that the chronic effect of effluent water is limited.

Please feel free to contact me if you have any questions or require any additional information. Thank you for your consideration.

Sincerely,

AMEC Massachusetts, Inc. By,

Paul & Richard

Paul G. Richard

Senior Program Director Phone: 978-392-5328 paul.richard@amecfw.com

Enclosures: ESS Laboratory Work Order #: 1606174

Cc: Sean Caldwell, Veolia Jim Harrison, Veolia David Lachance, AMEC

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

James Harrison Veolia 265 First Street Cambridge, MA 02142

RE: NPDES Bioassay (N/A)

ESS Laboratory Work Order Number: 1606174

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard
Laboratory Director

REVIEWED

By ESS Laboratory at 1:05 pm, Jul 11, 2016

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses

New England Bioassay - Manchester, CT

Bioassay

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

SAMPLE RECEIPT

The following samples were received on June 10, 2016 for the analyses specified on the enclosed Chain of Custody Record.

The sampling for this project was performed by a representative of ESS Laboratory.

The samples and analyses listed below were analyzed in accordance with the Guidelines Establishing Test Procedures for the Analysis of Pollutants, 40 CFR Part 136, as amended.

Samples 1606174-01 and 1606174-02 were received on June 7, 2016. Samples 1606174-03 and 1606174-04 were received on June 8, 2016.

Lab Number	Sample Name	Matrix	Analysis
1606174-01	Final Effluent	Waste Water	120.1, 200.7, 2320B, 2540B, 2540D, 350.1, 5310B,
			Field, n/a
1606174-02	Receiving Water	Surface Water	120.1, 200.7, 2320B, 2540B, 2540D, 350.1, 5310B,
			Field
1606174-03	Final Effluent	Waste Water	120.1, 200.7, 2320B, 2540B, 2540D, 350.1, 5310B,
			Field
1606174-04	Receiving Water	Surface Water	120.1, 200.7, 2320B, 2540B, 2540D, 350.1, 5310B,
	-		Field
1606174-05	Final Effluent	Waste Water	120.1, 200.7, 2320B, 2540B, 2540D, 350.1, 5310B,
			Field
1606174-06	Receiving Water	Surface Water	120.1, 200.7, 2320B, 2540B, 2540D, 350.1, 5310B,
	8		Field

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

Total Metals

Client Sample ID: Final Effluent ESS Laboratory Sample ID: 1606174-01

Date Sampled: 06/07/16 12:00 Sample Matrix: Waste Water

Percent Solids: N/A

MA All methods used are in accordance with 40 CFR 136.

Analyte Aluminum	Results 0.024	Units mg/L	MRL 0.010	Permit L 0.02	Method 200.7	<u>DF</u>	Analyst KJK	<u>Analyzed</u> 06/10/16 12:48	<u>I/V</u> 100	<u>F/V</u> 10
Cadmium	ND	mg/L	0.0010	0.001	200.7	1	KJK	06/10/16 12:48	100	10
Calcium	17.0	mg/L	0.020	0.05	200.7	1	KJK	06/10/16 12:48	100	10
Chromium	ND	mg/L	0.002	0.005	200.7	1	KJK	06/10/16 12:48	100	10
Copper	0.071	mg/L	0.002	0.0025	200.7	1	KJK	06/10/16 12:48	100	10
Hardness	76.9	mg/L	0.132		200.7	1	KJK	06/10/16 12:48	1	1
Lead	0.004	mg/L	0.002	0.005	200.7	1	KJK	06/10/16 12:48	100	10
Magnesium	8.38	mg/L	0.020	0.05	200.7	1	KJK	06/10/16 12:48	100	10
Nickel	ND	mg/L	0.002	0.004	200.7	1	KJK	06/10/16 12:48	100	10
Zinc	0.019	mg/L	0.005	0.0025	200.7	1	KJK	06/10/16 12:48	100	10

Client Sample ID: Receiving Water ESS Laboratory Sample ID: 1606174-02

Date Sampled: 06/06/16 11:30 Sample Matrix: Surface Water

Percent Solids: N/A

All methods used are in accordance with 40 CFR 136.

				1417 2						
Analyte Aluminum	<u>Results</u> 0.103	Units mg/L	$\frac{\mathbf{MRL}}{0.010}$	Permit L 0.02	Method 200.7	<u>DF</u>	<u>Analyst</u> KJK	Analyzed 06/09/16 23:38	<u>I/V</u> 100	<u>F/V</u>
Cadmium	ND	mg/L	0.0010	0.001	200.7	1	KJK	06/09/16 23:38	100	10
Calcium	30.6	mg/L	0.020	0.05	200.7	1	KJK	06/09/16 23:38	100	10
Chromium	ND	mg/L	0.002	0.005	200.7	1	KJK	06/09/16 23:38	100	10
Copper	0.009	mg/L	0.002	0.0025	200.7	1	KJK	06/09/16 23:38	100	10
Hardness	131	mg/L	0.132		200.7	1	KJK	06/09/16 23:38	1	1
Lead	ND	mg/L	0.002	0.005	200.7	1	KJK	06/10/16 12:57	100	10
Magnesium	13.4	mg/L	0.020	0.05	200.7	1	KJK	06/09/16 23:38	100	10
Nickel	0.003	mg/L	0.002	0.004	200.7	1	KJK	06/09/16 23:38	100	10
Zinc	0.042	mg/L	0.005	0.0025	200.7	1	KJK	06/09/16 23:38	100	10

MA

Client Sample ID: Final Effluent ESS Laboratory Sample ID: 1606174-03

Date Sampled: 06/08/16 12:00 Sample Matrix: Waste Water

Percent Solids: N/A

MA All methods used are in accordance with 40 CFR 136.

				14177							
Analyte	Results	<u>Units</u>	MRL	Permit L	Method	<u>DF</u>	Analyst	Analyzed	I/V	F/V	
Aluminum	0.014	mg/L	0.010	0.02	200.7	1	KJK	06/10/16 12:52	100	10	
Cadmium	ND	mg/L	0.0010	0.001	200.7	1	KJK	06/10/16 12:52	100	10	
Calcium	14.5	mg/L	0.020	0.05	200.7	1	KJK	06/10/16 12:52	100	10	

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 http://www.ESSLaboratory.com

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

Total Metals											
Chromium	ND	mg/L	0.002	0.005	200.7	1	KJK	06/10/16	12:52	100	10
Copper	0.060	mg/L	0.002	0.0025	200.7	1	KJK	06/10/16	12:52	100	10
Hardness	67.6	mg/L	0.132		200.7	1	KJK	06/10/16	12:52	1	1
Lead	ND	mg/L	0.002	0.005	200.7	1	KJK	06/10/16	12:52	100	10
Magnesium	7.63	mg/L	0.020	0.05	200.7	1	KJK	06/10/16	12:52	100	10
Nickel	ND	mg/L	0.002	0.004	200.7	1	KJK	06/10/16	12:52	100	10
Zinc	0.010	mg/L	0.005	0.0025	200.7	1	KJK	06/10/16	12:52	100	10

Client Sample ID: Receiving Water ESS Laboratory Sample ID: 1606174-04

Date Sampled: 06/08/16 12:45 Sample Matrix: Surface Water

Percent Solids: N/A

All methods used are in accordance with 40 CFR 136.

				MA The meeting as a set at a material and the set at th						
Analyte Aluminum	<u>Results</u> 0.028	Units mg/L	MRL 0.010	$\frac{\textbf{Permit L}}{0.02}$	Method 200.7	<u>DF</u>	Analyst KJK	Analyzed 06/09/16 23:44	<u>I/V</u> 100	<u>F/V</u> 10
Cadmium	ND	mg/L	0.0010	0.001	200.7	1	KJK	06/09/16 23:44	100	10
Calcium	28.8	mg/L	0.020	0.05	200.7	1	KJK	06/09/16 23:44	100	10
Chromium	ND	mg/L	0.002	0.005	200.7	1	KJK	06/09/16 23:44	100	10
Copper	0.012	mg/L	0.002	0.0025	200.7	1	KJK	06/09/16 23:44	100	10
Hardness	131	mg/L	0.132		200.7	1	KJK	06/09/16 23:44	1	1
Lead	ND	mg/L	0.002	0.005	200.7	1	KJK	06/09/16 23:44	100	10
Magnesium	14.3	mg/L	0.020	0.05	200.7	1	KJK	06/09/16 23:44	100	10
Nickel	ND	mg/L	0.002	0.004	200.7	1	KJK	06/09/16 23:44	100	10
Zinc	0.039	mg/L	0.005	0.0025	200.7	1	KJK	06/09/16 23:44	100	10

Client Sample ID: Final Effluent ESS Laboratory Sample ID: 1606174-05

Date Sampled: 06/10/16 07:00 Sample Matrix: Waste Water

Percent Solids: N/A

All methods used are in accordance with 40 CFR 136.

Analyte	Results	<u>Units</u>		Permit L	Method	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V
Aluminum	0.020	mg/L	0.010	0.02	200.7	1	ICP	06/13/16 19:54	100	10
Cadmium	ND	mg/L	0.0010	0.001	200.7	1	ICP	06/13/16 19:54	100	10
Calcium	28.8	mg/L	0.020	0.05	200.7	1	ICP	06/13/16 19:54	100	10
Chromium	ND	mg/L	0.002	0.005	200.7	1	ICP	06/13/16 19:54	100	10
Copper	0.057	mg/L	0.002	0.0025	200.7	1	ICP	06/13/16 19:54	100	10
Hardness	141	mg/L	0.132		200.7	1	ICP	06/13/16 19:54	1	1
Lead	0.003	mg/L	0.002	0.005	200.7	1	ICP	06/13/16 19:54	100	10
Magnesium	16.8	mg/L	0.020	0.05	200.7	1	ICP	06/13/16 19:54	100	10
Nickel	ND	mg/L	0.002	0.004	200.7	1	ICP	06/13/16 19:54	100	10
Zinc	0.019	mg/L	0.005	0.0025	200.7	1	ICP	06/13/16 19:54	100	10

MA

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

Total Metals

ESS Laboratory Sample ID: 1606174-06 Client Sample ID: Receiving Water

Date Sampled: 06/10/16 11:00 Sample Matrix: Surface Water

Percent Solids: N/A

				MA	All me	thods us	ed are in acc	cordance with 4	0 CFR	136.
Analyte Aluminum	<u>Results</u> 0.025	Units mg/L	MRL 0.010	Permit L 0.02	Method 200.7	<u>DF</u>	Analyst ICP	Analyzed 06/13/16 19:58	<u>I/V</u> 100	<u>F/V</u> 10
Cadmium	ND	mg/L	0.0010	0.001	200.7	1	ICP	06/13/16 19:58	100	10
Calcium	29.0	mg/L	0.020	0.05	200.7	1	ICP	06/13/16 19:58	100	10
Chromium	ND	mg/L	0.002	0.005	200.7	1	ICP	06/13/16 19:58	100	10
Copper	0.006	mg/L	0.002	0.0025	200.7	1	ICP	06/13/16 19:58	100	10
Hardness	143	mg/L	0.132		200.7	1	ICP	06/13/16 19:58	1	1
Lead	ND	mg/L	0.002	0.005	200.7	1	ICP	06/13/16 19:58	100	10
Magnesium	17.1	mg/L	0.020	0.05	200.7	1	ICP	06/13/16 19:58	100	10
Nickel	ND	mg/L	0.002	0.004	200.7	1	ICP	06/13/16 19:58	100	10
Zinc	0.038	mg/L	0.005	0.0025	200.7	1	ICP	06/13/16 19:58	100	10

Classical Chemistry

Client Sample ID: Final Effluent ESS Laboratory Sample ID: 1606174-01

Date Sampled: 06/07/16 12:00 Sample Matrix: Waste Water

Percent Solids: N/A

MA	All methods use	d are in accord	ance with 40	CFR 136.
----	-----------------	-----------------	--------------	----------

				1411				
Analyte Alkalinity as CaCO3	Results 43	Units mg/L	$\frac{\mathbf{MRL}}{2}$	Permit L 2	Method 2320B	<u>DF</u>	Analyst JLK	Analyzed 06/14/16 18:10
Ammonia as N	0.19	mg/L	0.10	0.1	350.1	1	JLK	06/15/16 22:53
Bioassay	See Attache	ed						
Conductivity	1230	umhos/cm	5		120.1	1	MJV	06/09/16 17:38
Field Dissolved Oxygen	8.34	mg/L	N/A	1	Field	1	MNM	06/07/16 12:00
Field pH	7.74	S.U.	N/A		Field	1	MNM	06/07/16 12:00
Field Temperature	27.4	°C	N/A		Field	1	MNM	06/07/16 12:00
Salinity	0.600	S.U.	N/A		Field	1	MNM	06/07/16 12:00
Total Organic Carbon (Average)	4.3	mg/L	0.5		5310B	1	DEL	06/14/16 0:08
Total Residual Chlorine	0.08	mg/L	N/A	0.05	Field	1	MNM	06/07/16 12:00
Total Solids	560	mg/L	50		2540B	1	EEM	06/10/16 15:40
Total Suspended Solids	ND	mg/L	5		2540D	1	EEM	06/09/16 15:55

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

Classical Chemistry

Client Sample ID: Receiving Water ESS Laboratory Sample ID: 1606174-02

Date Sampled: 06/06/16 11:30 Sample Matrix: Surface Water

Percent Solids: N/A

MA All methods used are in accordance with 40 CFR 136.

				MA				
Analyte Alkalinity as CaCO3	Results 39	Units mg/L	$\frac{\mathbf{MRL}}{2}$	$\frac{\textbf{Permit L}}{2}$	Method 2320B	<u>DF</u>	<u>Analyst</u> JLK	<u>Analyzed</u> 06/14/16 18:10
Ammonia as N	0.32	mg/L	0.10	0.1	350.1	1	JLK	06/15/16 22:54
Conductivity	1130	umhos/cm	5		120.1	1	MJV	06/09/16 17:38
Field Dissolved Oxygen	7.60	mg/L	N/A	1	Field	1	MNM	06/06/16 11:30
Field pH	7.68	S.U.	N/A		Field	1	MNM	06/06/16 11:30
Field Temperature	22.2	°C	N/A		Field	1	MNM	06/06/16 11:30
Salinity	0.500	S.U.	N/A		Field	1	MNM	06/06/16 11:30
Total Organic Carbon (Average)	46.0	mg/L	5.0		5310B	10	DEL	06/14/16 0:21
Total Residual Chlorine	0.20	mg/L	N/A	0.05	Field	1	MNM	06/06/16 11:30
Total Solids	650	mg/L	50		2540B	1	EEM	06/10/16 15:40
Total Suspended Solids	28	mg/L	5		2540D	1	EEM	06/09/16 15:55

Client Sample ID: Final Effluent ESS Laboratory Sample ID: 1606174-03

Date Sampled: 06/08/16 12:00 Sample Matrix: Waste Water

Percent Solids: N/A

MA All methods used are in accordance with 40 CFR 136.

				1111				
Analyte Alkalinity as CaCO3	Results 46	Units mg/L	$\frac{\mathbf{MRL}}{10}$	$\frac{\textbf{Permit L}}{2}$	$\frac{\text{Method}}{2320\text{B}}$	$\frac{\mathbf{DF}}{1}$	Analyst JLK	Analyzed 06/14/16 18:10
Ammonia as N	0.16	mg/L	0.10	0.1	350.1	1	JLK	06/15/16 22:55
Conductivity	1250	umhos/cm	5		120.1	1	MJV	06/09/16 17:38
Field Dissolved Oxygen	7.88	mg/L	N/A	1	Field	1	MNM	06/08/16 12:00
Field pH	7.67	S.U.	N/A		Field	1	MNM	06/08/16 12:00
Field Temperature	26.0	°C	N/A		Field	1	MNM	06/08/16 12:00
Salinity	0.600	S.U.	N/A		Field	1	MNM	06/08/16 12:00
Total Organic Carbon (Average)	4.3	mg/L	0.5		5310B	1	DEL	06/14/16 0:58
Total Residual Chlorine	0.09	mg/L	N/A	0.05	Field	1	MNM	06/08/16 12:00
Total Solids	400	mg/L	50		2540B	1	EEM	06/10/16 15:40
Total Suspended Solids	5	mg/L	5		2540D	1	JLK	06/14/16 21:07

Client Sample ID: Receiving Water ESS Laboratory Sample ID: 1606174-04

Date Sampled: 06/08/16 12:45 Sample Matrix: Surface Water

Percent Solids: N/A

MA

All methods used are in accordance with 40 CFR 136.

 Analyte
 Results
 Units mg/L
 MRL 10
 Permit L 2320B
 Method 1
 DF JLK
 Analyst 06/14/16 18:10

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

		Class	ical Ch	emistry	7			
Ammonia as N	0.30	mg/L	0.10	0.1	350.1	1	JLK	06/15/16 22:55
Conductivity	1200	umhos/cm	5		120.1	1	MJV	06/09/16 17:38
Field Dissolved Oxygen	6.11	mg/L	N/A	1	Field	1	MNM	06/08/16 12:45
Field pH	7.78	S.U.	N/A		Field	1	MNM	06/08/16 12:45
Field Temperature	23.0	°C	N/A		Field	1	MNM	06/08/16 12:45
Salinity	0.600	S.U.	N/A		Field	1	MNM	06/08/16 12:45
Total Organic Carbon (Average)	5.6	mg/L	0.5		5310B	1	DEL	06/14/16 1:11
Total Residual Chlorine	0.17	mg/L	N/A	0.05	Field	1	MNM	06/08/16 12:45
Total Solids	680	mg/L	50		2540B	1	EEM	06/10/16 15:40
Total Suspended Solids	5	mg/L	5		2540D	1	JLK	06/14/16 21:07

Client Sample ID: Final Effluent ESS Laboratory Sample ID: 1606174-05

Date Sampled: 06/10/16 07:00 Sample Matrix: Waste Water

Percent Solids: N/A

MA All methods used are in accordance with 40 CFR 136.

<u>Analyte</u>	Results	<u>Units</u>	<u>MRL</u>	Permit L	Method	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>
Alkalinity as CaCO3	43	mg/L	10	2	2320B	1	JLK	06/14/16 18:10
Ammonia as N	0.21	mg/L	0.10	0.1	350.1	1	JLK	06/15/16 22:58
Conductivity	1460	umhos/cm	5		120.1	1	JLK	06/14/16 16:50
Field Dissolved Oxygen	6.99	mg/L	N/A	1	Field	1	MNM	06/10/16 7:00
Field pH	7.67	S.U.	N/A		Field	1	MNM	06/10/16 7:00
Field Temperature	23.7	°C	N/A		Field	1	MNM	06/10/16 7:00
Salinity	0.700	S.U.	N/A		Field	1	MNM	06/10/16 7:00
Total Organic Carbon (Average)	5.0	mg/L	0.5		5310B	1	DEL	06/14/16 1:23
Total Residual Chlorine	0.07	mg/L	N/A	0.05	Field	1	MNM	06/10/16 7:00
Total Solids	744	mg/L	10		2540B	1	JLK	06/14/16 21:12
Total Suspended Solids	ND	mg/L	5		2540D	1	JLK	06/14/16 21:07

Client Sample ID: Receiving Water ESS Laboratory Sample ID: 1606174-06

Date Sampled: 06/10/16 11:00 Sample Matrix: Surface Water

Percent Solids: N/A

MA All methods used are in accordance with 40 CFR 136.

Analyte Alkalinity as CaCO3	Results 46	Units mg/L	<u>MRL</u> 10	Permit L 2	Method 2320B	<u>DF</u>	<u>Analyst</u> JLK	Analyzed 06/14/16 18:10
Ammonia as N	0.28	mg/L	0.10	0.1	350.1	1	JLK	06/15/16 22:59
Conductivity	1430	umhos/cm	5		120.1	1	JLK	06/14/16 16:50
Field Dissolved Oxygen	6.31	mg/L	N/A	1	Field	1	MNM	06/10/16 11:00
Field pH	7.52	S.U.	N/A		Field	1	MNM	06/10/16 11:00
Field Temperature	21.2	°C	N/A		Field	1	MNM	06/10/16 11:00
Salinity	0.700	S.U.	N/A		Field	1	MNM	06/10/16 11:00

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 http://www.ESSLaboratory.com

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

Classical Chemistry

Total Organic Carbon (Average)	6.0	mg/L	0.5	·	5310B	1	DEL	06/14/16 1:35
Total Residual Chlorine	0.11	mg/L	N/A	0.05	Field	1	MNM	06/10/16 11:00
Total Solids	476	mg/L	10		2540B	1	JLK	06/14/16 21:12
Total Suspended Solids	ND	mg/L	5		2540D	1	JLK	06/14/16 21:07

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Batch CF60909 - 3005A

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Total	Metals

Batch CF60909 - 3005A									
Blank									
Cadmium	ND	0.0100	mg/L						
Chromium	ND	0.020	mg/L						
Copper	ND	0.020	mg/L						
Lead	ND	0.020	mg/L						
Nickel	ND	0.050	mg/L						
Zinc	ND	0.050	mg/L						
Blank									
Aluminum	ND	0.010	mg/L						
Cadmium	ND	0.0010	mg/L						
Calcium	ND	0.020	mg/L						
Calcium	ND	0.020	mg/L						
Chromium	ND	0.002	mg/L						
Copper	ND	0.002	mg/L						
Hardness	ND	0.132	mg/L						
ead	ND	0.002	mg/L						
Magnesium	ND	0.020	mg/L						
Magnesium	ND	0.020	mg/L						
Nickel	ND	0.002	mg/L						
Zinc	ND	0.005	mg/L						
.cs									
Cadmium	0.228	0.0100	mg/L	0.2500	91	85-115			
Chromium	0.500	0.020	mg/L	0.5000	100	85-115			
Copper	0.505	0.020	mg/L	0.5000	101	85-115			
ead.	0.501	0.020	mg/L	0.5000	100	85-115			
Nickel	0.506	0.050	mg/L	0.5000	101	85-115			
Zinc	0.492	0.050	mg/L	0.5000	98	85-115			
.cs									
Aluminum	0.234	0.010	mg/L	0.2500	93	85-115			
Cadmium	0.0214	0.0010	mg/L	0.02500	86	85-115			
Calcium	0.459	0.020	mg/L	0.5000	92	85-115			
Calcium	0.459	0.020	mg/L	0.5000	92	85-115			
Chromium	0.048	0.002	mg/L	0.05000	95	85-115			
Copper	0.047	0.002	mg/L	0.05000	95	85-115			
Hardness	3.01	0.132	mg/L	0.03000	,,,	05 115			
_ead	0.048	0.132	mg/L	0.05000	96	85-115			
Magnesium	0.452	0.002	mg/L	0.5000	90	85-115 85-115			
Magnesium	0.452	0.020	mg/L	0.5000	90	85-115			
Nickel	0.432	0.020	mg/L	0.05000	96	85-115 85-115			
Zinc	0.050	0.005	mg/L	0.05000	96	85-115 85-115			
	0.030	0.003	III9/L	0.03000		03-113			
LCS Dup	0.220	0.0100	mr - 11	0.3500	03	05 115	0.5	20	
Cadmium	0.229	0.0100	mg/L	0.2500	92	85-115	0.5	20	
Chromium	0.502	0.020	mg/L	0.5000	100	85-115	0.5	20	
Copper	0.509	0.020	mg/L	0.5000	102	85-115	0.7	20	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486 ◆ Service http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
- ,			Total Met							
Batch CF60909 - 3005A										
Lead	0.503	0.020	mg/L	0.5000		101	85-115	0.3	20	
Nickel	0.509	0.050	mg/L	0.5000		102	85-115	0.7	20	
Zinc	0.498	0.050	mg/L	0.5000		100	85-115	1	20	
LCS Dup										
Aluminum	0.240	0.010	mg/L	0.2500		96	85-115	3	20	
Cadmium	0.0218	0.0010	mg/L	0.02500		87	85-115	2	20	
Calcium	0.493	0.020	mg/L	0.5000		99	85-115	7	20	
Calcium	0.493	0.020	mg/L	0.5000		99	85-115	7	20	
Chromium	0.049	0.002	mg/L	0.05000		97	85-115	2	20	
Copper	0.049	0.002	mg/L	0.05000		98	85-115	4	20	
Hardness	3.13	0.132	mg/L							
Lead	0.049	0.002	mg/L	0.05000		98	85-115	2	20	
Magnesium	0.460	0.020	mg/L	0.5000		92	85-115	2	20	
Magnesium	0.460	0.020	mg/L	0.5000		92	85-115	2	20	
Nickel	0.050	0.005	mg/L	0.05000		99	85-115	3	20	
Zinc	0.050	0.005	mg/L	0.05000		101	85-115	2	20	
Batch CF61310 - 3005A										
Blank										
Aluminum	ND	0.100	mg/L							
Copper	ND	0.020	mg/L							
Zinc	ND	0.050	mg/L							
Blank										
Aluminum	ND	0.010	mg/L							
Cadmium	ND	0.0010	mg/L							
Calcium	ND	0.020	mg/L							
Calcium	ND	0.020	mg/L							
Chromium	ND	0.002	mg/L							
Copper	ND	0.002	mg/L							
Hardness	ND	0.132	mg/L							
Lead	ND	0.002	mg/L							
Magnesium	ND	0.020	mg/L							
Magnesium	ND	0.020	mg/L							
Nickel	ND	0.005	mg/L							
Zinc	ND	0.005	mg/L							
LCS										
Aluminum	2.52	0.100	mg/L	2.500		101	85-115			
Copper	0.498	0.020	mg/L	0.5000		100	85-115			
Zinc	0.485	0.050	mg/L	0.5000		97	85-115			
LCS										
Aluminum	0.262	0.010	mg/L	0.2500		105	85-115			
Cadmium	0.0246	0.0010	mg/L	0.02500		98	85-115			
Calcium	0.546	0.020	mg/L	0.5000		109	85-115			
Calcium	0.546	0.020	mg/L	0.5000		109	85-115			
Chromium	0.052	0.002	mg/L	0.05000		103	85-115			

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486 ◆ Service http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Qualifier
			Total Meta	als						
atch CF61310 - 3005A										
opper	0.052	0.002	mg/L	0.05000		103	85-115			
ardness	3.47	0.132	mg/L							
ead	0.055	0.002	mg/L	0.05000		110	85-115			
lagnesium	0.511	0.020	mg/L	0.5000		102	85-115			
lagnesium	0.511	0.020	mg/L	0.5000		102	85-115			
ickel	0.053	0.005	mg/L	0.05000		107	85-115			
inc	0.057	0.005	mg/L	0.05000		113	85-115			
CS Dup										
luminum	2.43	0.100	mg/L	2.500		97	85-115	4	20	
opper	0.480	0.020	mg/L	0.5000		96	85-115	4	20	
inc	0.475	0.050	mg/L	0.5000		95	85-115	2	20	
CS Dup										
uminum	0.244	0.010	mg/L	0.2500		98	85-115	7	20	
admium	0.0231	0.0010	mg/L	0.02500		93	85-115	6	20	
alcium	0.498	0.020	mg/L	0.5000		100	85-115	9	20	
alcium	0.498	0.020	mg/L	0.5000		100	85-115	9	20	
hromium	0.049	0.002	mg/L	0.05000		97	85-115	6	20	
opper	0.048	0.002	mg/L	0.05000		96	85-115	7	20	
lardness	3.17	0.132	mg/L							
ead	0.051	0.002	mg/L	0.05000		102	85-115	8	20	
lagnesium	0.467	0.020	mg/L	0.5000		93	85-115	9	20	
lagnesium	0.467	0.020	mg/L	0.5000		93	85-115	9	20	
ickel	0.050	0.005	mg/L	0.05000		100	85-115	6	20	
nc	0.050	0.005	mg/L	0.05000		101	85-115	11	20	
		Cl	assical Cher	mistry						
atch CF60923 - General Preparation										
Blank										
otal Suspended Solids	ND	5	mg/L							
cs										
otal Suspended Solids	62		mg/L	60.60		102	80-120			
atch CF60941 - General Preparation										
lank			le /							
Conductivity	ND	5	umhos/cm							
.cs										
			umhos/cm	1411		94	90-110			
onductivity	1320				· · · · · · · · · · · · · · · · · · ·	·				
	1320									
onductivity Satch CF61022 - General Preparation	1320									
atch CF61022 - General Preparation	1320 ND	10	mg/L							
latch CF61022 - General Preparation		10	mg/L							
ratch CF61022 - General Preparation		10	mg/L mg/L	324.0		105	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		C	Classical Cher	nistry						
Batch CF61347 - General Preparation										
Blank										
Total Organic Carbon (1)	ND	0.5	mg/L							
Total Organic Carbon (2)	ND	0.5	mg/L							
Total Organic Carbon (Average)	ND	0.5	mg/L							
LCS										
Total Organic Carbon (1)	4.66	0.5	mg/L	5.000		93	80-120			
Total Organic Carbon (2)	4.86	0.5	mg/L	5.000		97	80-120			
Total Organic Carbon (Average)	4.80	0.5	mg/L							
LCS Dup										
Total Organic Carbon (1)	4.06	0.5	mg/L	5.000		81	80-120	14	200	
Total Organic Carbon (2)	4.04	0.5	mg/L	5.000		81	80-120	19	200	
Total Organic Carbon (Average)	4.00	0.5	mg/L							
Batch CF61426 - General Preparation										
Blank										
Total Solids	ND	10	mg/L							
LCS										
Total Solids	310		mg/L	324.0		96	80-120			
Batch CF61427 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	60		mg/L	60.60		99	80-120			
Batch CF61428 - General Preparation										
Blank										
Conductivity	ND	5	umhos/cm							
LCS										
Conductivity	1320		umhos/cm	1411		94	90-110			
Batch CF61431 - General Preparation										
Blank										
Alkalinity as CaCO3	ND	10	mg/L							
LCS										
Alkalinity as CaCO3	78		mg/L	78.30		100	85-115			
Batch CF61501 - General Preparation										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.12	0.10	mg/L	0.09994		116	80-120			
LCS										
Ammonia as N	0.95	0.10	mg/L	0.9994		95	80-120			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

Notes and Definitions

Z-08	See Attached
U	Analyte included in the analysis, but not detected
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NID	N. D

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1606174

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory accreditation program/590095

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

EnviroSystems, Inc. P.O. Box 778 Hampton, NH 03843-0778 603-926-3345

July 8, 2016

Mr. Joe Sirbak ESS Laboratories 185 Frances Avenue Cranston, Rhode Island 02910

Dear Mr. Sirbak:

Enclosed, please find a copy of our report evaluating the toxicity of effluent samples collected from the Kendall Green Energy Facility located in Cambridge, Massachusetts during June 2016. Acute and chronic toxicity was evaluated using the freshwater species, *Ceriodaphnia dubia* and *Pimephales promelas*.

Please do not hesitate to call me or Petra Karbe should you have any questions regarding the report.

Sincerely,

EnviroSystems, Incorporated

Kirk Cram

Toxicology Laboratory Manager

Enclosure

WET Test Report Certification

WET Test Report Number 27578-16-06

One (1) Copy (email only)

cc: Mr. Matt Miller (email only)

Ms. Michelle Mirenda (email only)

Mr. Shawn Morrell (email only)

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION

Permittee Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: 7/15/16	Monny
	Authorized Signature
	R. Scott Mc Burney
	Print or Type Name
	Kendall Green Energy, LLC
	Print or Type the Permittee's Name
	MA0004898
	Type or Print the NPDES Permit No.

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Bioassay Laboratory)

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: July 8, 2016 Wish brang

Kirk Cram
Toxicology Laboratory Manager - EnviroSystems, Inc.

METHODS USED IN NPDES PERMIT BIOMONITORING TESTING

Parameter	Method
Acute Exposure Bioassays:	
Ceriodaphnia dubia	EPA-821-R-02-012 2002.0
Daphnia pulex	EPA-821-R-02-012 2021.0
Pimephales promelas	EPA-821-R-02-012 2000.0
Americamysis bahia	EPA-821-R-02-012 2007.0
Menidia beryllina	EPA-821-R-02-012 2006.0
Cyprinodon variegatus	EPA-821-R-02-012 2004.0
Chronic Exposure Bioassays:	
Ceriodaphnia dubia	EPA-821-R-02-013 1002.0
Pimephales promelas	EPA-821-R-02-013 1000.0
Cyprinodon variegatus	EPA-821-R-02-014 1004.0
Menidia beryllina	EPA-821-R-02-014 1006.0
Arbacia punctulata	EPA-821-R-02-014 1008.0
Champia parvula	EPA-821-R-02-014 1009.0
Trace Metals:	
Trace Metals	EPA 200.8/SW 6020, EPA 245.7
Hardness	EPA SW846 3rd Ed. 6010
Wet Chemistries:	
Alkalinity	EPA 310.2
Chlorine, Residual	Standard Methods 22 nd Edition - Method 4500-CI D
Total Organic Carbon	Standard Methods 22 nd Edition - Method 5310 C
Specific Conductance	Standard Methods 22 nd Edition - Method 2510 B
Nitrogen - Ammonia	Standard Methods $22^{\rm nd}$ Edition - Method 4500-NH $_3$ G
рН	Standard Methods 22 nd Edition - Method 4500-H+ B
Solids, Total (TS)	Standard Methods 22 nd Edition - Method 2540 B
Solids, Total Dissolved (TDS)	Standard Methods 22 nd Edition - Method 2540 C
Solids, Total Suspended (TSS)	Standard Methods 22 nd Edition - Method 2540 D
Dissolved Oxygen	Standard Methods 22 nd Edition - Method 4500-O G

Please visit our web site at www.envirosystems.com for a copy of our accreditations and state certifications.

TOXICOLOGICAL EVALUATION OF A POWER PLANT EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: June 2016

Kendall Green Energy Facility

Cambridge, Massachusetts
NPDES Permit Number MA0004898

Prepared For:

ESS Laboratories 185 Frances Avenue Cranston, Rhode Island 02910

Prepared By:

EnviroSystems, Incorporated One Lafayette Road Hampton, New Hampshire 03842

June 2016 Reference Number: ESS-Kendall27578-16-06

STUDY NUMBER 27578

EXECUTIVE SUMMARY

The following summarizes the results of modified acute and chronic exposure bioassays completed during June 2016 to support the NPDES biomonitoring requirements of the Kendall Green Energy Facility located in Cambridge, Massachusetts. Samples were provided by ESS Laboratories, Cranston, Rhode Island. Acute and chronic exposure toxicity were evaluated using the freshwater species, *Ceriodaphnia dubia* and *Pimephales promelas*.

C. dubia, cultured at ESI, were <24 hours old juveniles released within 8 hours of one another. *P. promelas*, supplied by Aquatic BioSystems, Inc. of Fort Collins, Colorado, were <48 hours old at the start of the assay. Dilution water was receiving water collected from the Charles River upstream of the point of discharge. Samples were received under chain of custody in good order. All sample receipt, test conditions and control endpoints were within protocol specifications, except where otherwise noted.

The results presented in this report relate only to the samples described on the chain(s) of custody and sample receipt log(s), and are intended to be used only by the submitter. Results from the modified acute and chronic exposure assays and their relationship to permit limits are summarized in the following matrix.

Acute Toxicity Evaluation

Species	Exposure	LC-50	A-NOEC	Permit Limit (LC-50)	Effluent Meets Permit Limit	Assay Meets Protocol Limits
Ceriodaphnia dubia ^a	48 Hours	>100%	NC	Report	NA	Yes
Pimephales promelas	48 Hours	>100%	NC	Report	NA	Yes

Chronic Toxicity Evaluation

Species	Exposure	C-NOEC	IC-25	Permit Limit (C-NOEC)	Effluent Meets Permit Limit	Assay Meets Protocol Limits
Ceriodaphnia dubia ^a	7 Days	25% ^b	32.5% ^b	Report	NA	Yes
Pimephales promelas ^{c, d}	7 Days	100% ^e	>100% ^e	Report	NA	Yes

COMMENTS:

NC = Not Calculated.

^a Replicates E of the laboratory non-diluent control and B of the 6.25% test concentration were removed from statistical analyses because the daphnids were missing on test day 2.

b Statistical analysis of the daphnid survival data demonstrated a non-standard dose response curve with a significant effect observed in only the 100% test concentration, resulting in a calculated C-NOEC of 50%. Computation of the IC-25 for survival resulted in a value of 32.5%. Both controls (laboratory and receiving water) met acceptability criteria and the test variability criterion (MSDp) was met. Based on this evidence, a C-NOEC of 25% best represents the observed data.

^c Replicate A of the laboratory non-diluent control was inadvertently spilled and only 8 fish were recovered on test day 5; therefore, only 8 organisms were used from the start of the assay in this replicate for the statistical analyses.

^d One fish was inadvertently killed in replicate C of the receiving water diluent control on test day 4; therefore, only 9 organisms were used from the start of the assay in this replicate for the statistical analyses.

^e The minnow growth data demonstrated a non-standard dose response curve with a significant effect observed in only the 100% test concentration, resulting in a calculated C-NOEC of 50%. Control responses (laboratory and receiving water) and test variability all met acceptability criteria, although the test variability MSDp was calculated to be in the lower end of the acceptable range for this species at 17.2%, indicating there

was little variability within the data set and a higher likelihood that a significant response would be identified. Computation of the IC-25 for growth resulted in a value of >100%. Based on these findings, the calculated C-NOEC is considered unreliable and a C-NOEC of 100% based on the IC-25 is considered representative of the observed data.

TOXICOLOGICAL EVALUATION OF A POWER PLANT EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: June 2016

Kendall Green Energy Facility

Cambridge, Massachusetts
NPDES Permit Number MA0004898

1.0 INTRODUCTION

This report presents the results of toxicity tests completed on a series of composite effluent samples collected from the Kendall Green Energy Facility located in Cambridge, Massachusetts. Samples were provided by ESS Laboratories, Cranston, Rhode Island. Testing was based on programs and protocols developed by the US EPA (2002), with exceptions as noted by US EPA Region I (2011, 2013), and involved conducting modified acute and chronic toxicity tests with the freshwater species, *Ceriodaphnia dubia* and *Pimephales promelas*. Testing was performed at EnviroSystems, Incorporated (ESI), Hampton, New Hampshire in accordance with the provisions of TNI Standards (2009).

Acute toxicity tests involve preparing a series of test concentrations by diluting test samples with control water. Groups of test organisms are exposed to each test concentration and a control for a specified period. The mortality data for each concentration can be used to calculate (by regression) the median lethal concentration or LC-50, defined as the concentration of effluent that kills half of the test organisms. Samples with a high LC-50 value are less likely to cause significant environmental impacts. These data can also be analyzed to determine the no effect level. This Acute No Observed Effect Concentration (A-NOEC) is defined as the highest tested effluent concentration that causes no significant mortality. Chronic toxicity tests measure sublethal effects, exposing test organisms to samples during a sensitive period in the life cycle. Minnow chronic tests measure survival and growth (weight) during the first seven days post hatch, and daphnid chronic tests measure survival and juvenile production. Using Analysis of Variance techniques to evaluate the data, it is possible to determine the lowest tested concentration that had an effect (C-LOEC) and the highest tested concentration where no effect (C-NOEC) was observed.

2.0 MATERIALS AND METHODS

2.1 General Methods

Toxicological and analytical protocols used in this program follow procedures primarily designed to provide standard approaches for the evaluation of toxicological effects of discharges on aquatic organisms (US EPA 2002), and for the analysis of water samples (APHA 2012). See Section 4.0 for a list of references.

2.2 Test Species

C. dubia were maintained in laboratory water at 25±1°C with a photoperiod of 16:8 hours light:dark. Cultures are fed daily with a yeast/trout chow/Cerophyll or alfalfa leaves (YTC) mixture supplemented with Pseudokirchneriella subcapitata (algae) (US EPA 2002). Adults on a brood board were isolated 24 hours prior to test start and allowed to reproduce for 8 hours.

When necessary, *P. promelas* were acclimated to approximate test conditions prior to use in the assay. Organisms were transferred to test chambers using an inverted glass pipette, minimizing the amount of water added to test solutions.

2.3 Effluent, Receiving Water and Laboratory Water

Effluent and receiving water collection information is provided in Table 1. Samples were received at 0-6°C as per 40 CFR §136.3 unless otherwise noted, stored at 4±2°C and warmed to 25±1°C prior to preparing test solutions. Laboratory water was synthetic reconstituted water prepared at ESI according to protocol (US EPA 2002). This water has been used to successfully culture freshwater organisms since 1992.

Kendall Green Energy Biomonitoring Evaluation, June 2016. Study Number 27578.

Total residual chlorine (TRC) was measured by amperometric titration (MDL $0.02\,\text{mg/L}$) in the effluent samples prior to use in the assays. Samples with $\geq 0.02\,\text{mg/L}$ TRC were dechlorinated using sodium thiosulfate (US EPA 2002).

2.4 Chronic Exposure Bioassays

The chronic exposure bioassays were conducted according to protocol (US EPA 2002), which called for the daily renewal of test solutions. Test treatments were 100% (undiluted), 50%, 25%, 12.5%, and 6.25% effluent. Dissolved oxygen, pH, temperature, and specific conductivity were measured in one replicate of each new test solution.

Test chambers for the daphnid assay were 30 mL portion cups containing approximately 20 mL of test solution in each of 10 replicates with 1 organism/replicate. Replicates were not randomized during testing; rather, organisms were added at test initiation by blocking by known parentage. Survival and juvenile production were monitored daily. Daphnids were each fed 200 μL of YTC supplemented with algae after daily renewals.

Test chambers for the fathead minnow assay were 400-600 mL beakers with 250 mL of solution in each of 4 replicates containing 10 organisms/replicate. Replicates were not randomized during testing; rather, organisms were added randomly at test initiation by replicate across test solutions in an alternating fashion (alternating allocation). Prior to daily renewals, survival and dissolved oxygen were measured in all replicates, and pH, temperature and specific conductivity were measured in one replicate of each concentration. Fish were fed newly hatched *Artemia* nauplii daily. Dead nauplii from previous feedings were removed during daily renewals. On Day 7 of the assay, surviving fish were tranquilized using Finquel[®] tricaine methane sulfonate and rinsed in deionized water, then placed on tared weighing pans and dried overnight at 104±5°C to obtain dry weight to 0.01 mg. To calculate the final dry biomass/fish, the net dry weight was divided by the number of organisms introduced at the start of the assay.

2.5 Data Analysis

Statistical analysis of acute and chronic exposure data was completed using CETIS $^{\text{TM}}$ v 1.9.2.4, Comprehensive Environmental Toxicity Information System, software. The program computes acute and chronic exposure endpoints based on US EPA decision tree guidelines specified in individual test methods. If survival in the highest test concentration is >50%, the LC-50 is obtained by direct observation of the raw data. As needed, the A-NOEC is determined as the highest test concentration that caused no significant mortality. For chronic exposure endpoints statistical significance was accepted at \approx = 0.05. For statistical calculations of *C. dubia* juvenile production, data from only the first three broods are used.

2.6 Quality Control

As part of the laboratory quality control program, reference toxicant evaluations are completed on a regular basis for each test species. These results, summarized in Table 2, provide regular laboratory performance evaluation through the comparison of historic data sets.

3.0 RESULTS AND DISCUSSION

Results of the chronic and modified acute exposure assays completed using *C. dubia* and *P. promelas* are presented in Tables 3 and 4, respectively. Water quality data collected during the assays are summarized in Table 5. US EPA Region I Attachment F toxicity test summary sheets are included after the tables. Support data, including copies of laboratory bench sheets, are provided in Appendix A.

3.1 Chronic Exposure Bioassay - Ceriodaphnia dubia

Minimum test acceptability criteria require 80% control survival, mean reproduction of 15 juveniles/female, production of 3 broods by at least 60% of control females, and the MSDp for reproduction to be <47% (US EPA 2002). Achievement of these results indicates that healthy test organisms were used and that the dilution water had no significant adverse impact on the outcome of the assay. See the Executive Summary and Table 3 for test acceptability.

3.2 Chronic Exposure Bioassay - Pimephales promelas

Minimum test acceptability criteria require 80% control survival, a mean dry weight of 0.25 mg/fish based on Day 7 survival, and the MSDp for biomass to be <30% (US EPA 2002). Achievement of these results indicates that healthy test organisms were used and that the dilution water had no significant adverse impact on the outcome of the assay. See the Executive Summary and Table 4 for test acceptability.

4.0 LITERATURE CITED

- 40 CFR §136.3. Code of Federal Regulations (CFR), Protection of the Environment (Title 40), Guidelines Establishing Test Procedures for the Analysis of Pollutants (Part 136), Identification of Test Procedures (sub-part 3), Table II-Required Containers, Preservation Techniques, and Holding Times.
- APHA. 2012. Standard Methods for the Examination of Water and Wastewater, 22nd Edition. Washington D.C.
- The NELAC Institute (TNI). 2009. Environmental Laboratory Sector, Volume 1: Management and Technical Requirements for Laboratories Performing Environmental Analysis (TNI Standard). EL-V1-2009.
- US EPA. 2000. Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136). EPA 821-B-00-004
- US EPA. 2002. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. Fifth Edition. EPA-821-R-02-012.
- US EPA. 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. Fourth Edition. EPA-821-R-02-013.
- US EPA Region I. 2011. US EPA Region 1 Freshwater Acute Toxicity Test Procedure and Protocol. US EPA Region I Office, Boston, Massachusetts. February 28, 2011.
- US EPA Region I. 2013. Freshwater Chronic Toxicity Test Procedure and Protocol US EPA Region I. US EPA Region I Office, Boston, Massachusetts. March 2013.

TABLE 1. Summary of Sample Collection Information.
Kendall Green Energy Biomonitoring Evaluation. June 2016.

Campla		Collec	ction	Red	eipt	Arrival
Sample Description	Туре	Date	Time	Date	Time	Temp °C
EFFLUENT - Outfall 00	11					
Start	Comp	06/06-07/16	1200-1200	06/07/16	1310	2
First Renewal	Comp	06/07-08/16	1200-1200	06/08/16	1415	2
Second Renewal	Comp	06/09-10/16	0700-0700	06/10/16	1240	3
RECEIVING WATER -	Charles Rive	r				
Start	Grab	06/06/16	1130	06/07/16	1310	2
First Renewal	Grab	06/08/16	1245	06/08/16	1415	2
Second Renewal	Grab	06/10/16	1100	06/10/16	1240	3

TABLE 2. Summary of Reference Toxicant Data.
Kendall Green Energy Biomonitoring Evaluation. June 2016.

Date	Endı	point	Value	Historic Mean/ Central Tendency	Acceptable Range	Reference Toxicant
C. dubia						
05/18/16	Survival	LC-50	40.7	21.8	2.4 - 41.22	SDS (mg/L)
05/18/16	Survival	C-NOEC	30.0	30.0	15.0 - 60.0	Copper (µg/L)
05/18/16	Reproduction	C-NOEC	30.0	15.0	7.5 - 30.0	Copper (µg/L)
05/18/16	Reproduction	MSDp	15.1	31.6	12.6 - 50.7	Copper (µg/L)
P. promela						
05/18/16	Survival	LC-50	36.2	32.2	23.0 - 41.3	SDS (mg/L)
06/02/16	Survival	C-NOEC	20.0	20.0	10.0 - 30.0	SDS (mg/L)
06/02/16	Growth	C-NOEC	20.0	10.0	5.0 - 20.0	SDS (mg/L)
06/02/16	Growth	MSDp	32.9	29.3	1.2 - 57.3	SDS (mg/L)

Means and Acceptable Ranges based on the most recent 20 reference toxicant assays

TABLE 3. Summary of Chronic and Modified Acute Results: *C. dubia*. Kendall Green Energy Biomonitoring Evaluation. June 2016.

Effluent	Mean Percent Survival		Mean Reproduction	% Females Producing 3	Is There a Significant Difference Based on	
Conc.	Day 2	Day 7	(Juv/Female)	Broods	Survival (%)	Reproduction
LAB ^a	100.0%	100.0%	30.7	70.0%	-	-
RW	100.0%	100.0%	24.3	80.0%	-	-
6.25% ^a	88.9%	88.9%	20.9	44.4%	No	No
12.5%	100.0%	100.0%	25.0	80.0%	No	No
25.0%	90.0%	90.0%	20.9	70.0%	No	No
50.0%	100.0%	50.0%	9.4	30.0%	No	Yes
100.0%	100.0%	0.0%	0.0	0.0%	Yes ^b	-
	LC-50 = >100%		MSDp = 35.0%		NOEC = 25% ^b IC-25 = 32.5% ^b	NOEC = 25% IC-25 = 29.4%

COMMENTS:

RW = Receiving Water; used as the diluent.

^a Replicates E of the laboratory non-diluent control and B of the 6.25% test concentration were removed from statistical analyses because the daphnids were missing on test day 2.

^b The daphnid survival data demonstrated a non-standard dose response curve with a significant effect observed in only the 100% test concentration, resulting in a calculated C-NOEC of 50%. Computation of the IC-25 for survival resulted in a value of 32.5%. Both controls (laboratory and receiving water) met acceptability criteria and the test variability criterion (MSDp) was met. Based on this evidence, a C-NOEC of 25% best represents the observed data.

TABLE 4. Summary of Chronic and Modified Acute Results: *P. promelas*. Kendall Green Energy Biomonitoring Evaluation. June 2016.

Effluent	Mean Percent Survival		Mean Biomass	Is There a Significant Difference Based on		
Conc.	Day 2	Day 7	(mg/fish)	Survival (%)	Growth (Biomass)	
LAB ^a	100.0%	91.2%	0.617	-	-	
RW ^b	100.0%	90.0%	0.645	-	-	
6.25%	100.0%	77.5%	0.575	No	No	
12.5%	100.0%	97.5%	0.670	No	No	
25.0%	100.0%	87.5%	0.592	No	No	
50.0%	100.0%	87.5%	0.632	No	No	
100.0%	97.5%	80.0%	0.519	No	Yes ^c	
	LC-50 = >100%		MSDp = 17.2% ^c	NOEC = 100%	NOEC = 100% ° IC-25 = >100% °	

COMMENTS:

RW = Receiving Water; used as the diluent.

TABLE 5. Initial Water Quality and Analytical Data Summary.

Kendall Green Energy Biomonitoring Evaluation. June 2016.

PARAMETER	UNITS	EFFLUENT	RECEIVING WATER
Specific Conductance	μS/cm	1272	1153
рН	SU	7.35	7.12
Total Residual Chlorine	mg/L	<0.02	-

COMMENTS:

Additional water quality data are provided in Appendix A.

^a Replicate A of the laboratory non-diluent control was inadvertently spilled and only 8 fish were recovered on test day 5; therefore, only 8 organisms were used from the start of the assay in this replicate for the statistical analyses.

^b One fish was inadvertently killed in replicate C of the receiving water diluent control on test day 4; therefore, only 9 organisms were used from the start of the assay in this replicate for the statistical analyses.

^c The minnow growth data demonstrated a non-standard dose response curve with a significant effect observed in only the 100% test concentration, resulting in a calculated C-NOEC of 50%. Control responses (laboratory and receiving water) and test variability all met acceptability criteria, although the test variability MSDp was calculated to be in the lower end of the acceptable range for this species at 17.2%, indicating there was little variability within the data set and a higher likelihood that a significant response would be identified. Computation of the IC-25 for growth resulted in a value of >100%. Based on these findings, the calculated C-NOEC is considered unreliable and a C-NOEC of 100% based on the IC-25 is considered representative of the observed data.

TOXICITY TEST SUMMARY SHEET

FACILITY NAME:	Kendall Green Energy Facility	_TEST START DATE:	06/07/16
NPDES PERMIT NO.:	MA0004898	TEST END DATE:	06/14/16
TEST TYPE	TEST SPECIES	SAMPLE TYPE	SAMPLE METHOD
Acute	Pimephales promelas	Prechlorinated	Grab
Chronic	X Ceriodaphnia dubia	Dechlorinated	X Composite
X_Modified Chronic	Daphnia pulex	Chlorine Spiked in Lab	Flow-thru
(Reporting Acute	Americamysis bahia	Chlorinated on Site	Other
Values)	Cyprinodon variegatus	Unchlorinated	
24 Hour Screen	Menidia beryllina	X No Detectable Chlorine Up	oon Receipt
	Arbacia punctulata		
DILUTION WATER:			
	ected at a point upstream or away fr ceiving Water Name: <u>Charles River</u>		icity or other sources
Alternate surface wa water; Receiving Wa	ter of known quality and hardness, t ter Name:	o generally reflect the character	istics of the receiving
,	ared using either Millipore Milli-Q or zed water combined with mineral wa	•	reagent grade
Artificial sea salts mi	xed with deionized water		
Deionized water and	hypersaline brine		
Other			
EFFLUENT SAMPLING EFFLUENT CONCENTS Permit Limit Concentration	RATIONS TESTED (%): 6.25%, 12	<u>06/07-08/16</u> <u>06/09-10/16</u> .5%, 25%, 50%, 100%	_
Was the effluent salinity		hat level?	_ppt
REFERENCE TOXICAN	T TEST DATE: 05/18/16 LC-50	0: <u>40.7</u> mg/L Sodium Dode	cyl Sulfate
	<u>05/18/16</u> NOEC	C: <u>30.0</u> mg/ Copper	
	PERMIT LIMITS AND		
Maan Dilwant Cantual C	Test Acceptabil		0.4.0
Mean Diluent Control S	survival: <u>100</u> %	Mean # Juveniles / Female: MSDp:	24.3 35.0 %
LIMITS		RESULTS	
LC-50:%		LC-50:	>100 %
		Upper Limit:	- %
A-NOEC:%		Lower Limit:	<u> </u>
		Method:	Direct Observation
C-NOEC:%		A-NOEC:	<u> </u>
		C-NOEC:	25 %
		C-LOEC:	<u>50</u> %
		IC- 25	29.4 %

TOXICITY TEST SUMMARY SHEET

FACILITY NAME: NPDES PERMIT NO.:	Kendall Green Energy Facility MA0004898	TEST START DATE: TEST END DATE:	06/07/16 06/14/16
TEST TYPEAcuteChronic X Modified Chronic (Reporting Acute Values)24 Hour Screen	TEST SPECIES X Pimephales promelas Ceriodaphnia dubia Daphnia pulex Americamysis bahia Cyprinodon variegatus Menidia beryllina Arbacia punctulata	SAMPLE TYPE Prechlorinated Dechlorinated Chlorine Spiked in Lab Chlorinated on Site Unchlorinated X No Detectable Chlorine U	SAMPLE METHOD Grab X Composite Flow-thru Other Jpon Receipt
of contamination; Re	ected at a point upstream or away foceiving Water Name: <u>Charles Rive</u> ter of known quality and hardness, ter Name:	r	
chemicals; or deioniz Artificial sea salts mi Deionized water and Other EFFLUENT SAMPLING	DATES:06/06-07/16	o6/07-08/16 06/09-10/1	
Was the effluent salinity		what level?	_ppt
REFERENCE TOXICAN			decyl Sulfate decyl Sulfate
	PERMIT LIMITS AND Test Acceptabi		
Mean Diluent Control S	urvival: 90%	Mean Dry Weight/Fish: MSDp:	0.716 mg/fish 17.2 %
LIMITS		RESULTS	
LC-50:% A-NOEC:%		LC-50: Upper Limit: Lower Limit:	>100 % - % - %
C-NOEC:%		Method: A-NOEC: C-NOEC: C-LOEC:	Direct Observation - % 100 % >100 % >100 %

APPENDIX A

DATA SHEETS

STATISTICAL SUPPORT

CONTENTS	NUMBER of PAGES
Methods Used in NPDES Permit Biomonitoring Testing	1
Massachusetts DEP Accreditation Certification and Certified Parameter List	3
C. dubia Chronic Reproduction Assay Bench Sheets	2
C. dubia Survival and Reproduction Statistical Analysis	6
C. dubia Blocking by Parentage Tracking Sheet	1
P. promelas 7 Day Chronic Assay Bench Sheet	1
Larval Fish Dry Weight Summary Sheet	1
P. promelas Statistical Analysis	6
Organism History	1
Daily Water Quality Data	3
Preparation of Dilutions & Record of Meters Used	2
Sample Receipt Record	1
Chain of Custody	3
Assay Review Checklist	1
Total Appendix Pages	32

STUDY#	CONC	Day	A	В	С	D	E	F	G	H		J	SUM	SURV	1		
27578		0	+	+	+	+	1+	+	+	+	+	+	Ú	10			
CLIENT:		1	+	+	+	+	+	+	1	+	1+	+	0	10			
ESS Laboratories-		2	+	+	+	ナ	MESS	+	+	+	+	+	0	9			
Kendall Station		3	+	+	+	+	i	+	+	+	+	1+	0	9			
SAMPLE:	MSR	4	4	6	7	+		5	6	+	7	5	40	9	6 47		
Effluent	WOI	5	+	+	+	+		4	+	12	士	+	12	9	70%		
DILUENT:		6	9	18	12	10		8	12	+	10	13	92	9			
RW		7	12"	No "	19.	10		12:	12:	15.	17	13	132	9			
Cerio Data		8			a ()	01	1	0 =	0.5		0	0.1		0			
source: MSR 🛱		Total	25	40	38	26	<u> </u>	25	30	27	34	31	276	9			
MHR 🖄		0	+	+	+	+	+	+	+	+	+	+	0	10			
collected:		1	+	+	+-	+	+	+	+	+	+	+	0	16			
previous pm 🛚		2	+	ナ	+	ナ	+-	, +	+	+	+	+	Ö	10			
test day am ⊠́		3	+	+-	+	<u> </u>	+	+	+	+	+	+	٥	10			
Day 0 06107116 Time: 1515	RW	4	5	4	4	5	Ŧ	3	+	¥	4	ナ	25	10	80%		
Initial: EH		5	6	(5)	4	5	3	4	4	+	+	3	22	10	⊕ NP 6/4		
Day 106 108 Time: 1110		6	10	W	13	13	Н	14	11	8	9	(0	99	10			
Initial: EH		7	+	16	17	19	4	9.	12:	15'	7,	17	97	10			
Day 2 ळाळाम्हादक्षि Time:॥।ऽ		8															
Initial: _N /		Total	21	36	34	23	i I	24	23	23	20	26	243	10			
Day 3 Cullollu Time: 1340	6.25%	0	+	_	+-	+	+	+	+	+	\perp	+	0	10			
Initial: HK		1	+	+	******	+	+		+	+	+	+	0	770			
Day 4 & 11/16 Time: 1035		2	+	M 69 12094		+-	ナ	ナ	+	+	+	+	0	8			
Initial: pp		3	+			+	+	_+		+	+	+	0	8			
Day <i>506 12 16</i> Time: \22°		4	3			5	4	+	+	+	3	7	15	8	44.4%		
Initial: 80		5	(3)			Ч	+	<u>+</u>	+	G	+	+	13		144.1.		
Day 606113 Time: เทอ		6	8/			17	9	5	10	+	10	15	<u> </u>	8			
Initial: EH Day 706/14		7	1.1		+	19	13	10	- 11	15	5	5	BLE	8			
Time: 1430		8 Total	31	J	0	26	240	15	21	21	28	20	ing	8			
Initial: ეⴙ Day 8		0	+	-) -	-		+	15	21	+	1	20	188	-			
Time: Initial:		1	+	+	+	+			+			+	0	10			
LEGEND:		2	+	<u>-</u>	-}-	+	+	+	+	+	+	ナナ	0	10			
+ = Live		3	+	+	+	+	+	万	-, -	<u>ナ</u> +	+	+	0	10			
- = Dead		4	<u>+</u>	4	5	6	4	Ц	+	7	137	4	35	10	80%		
♂ = Male	12.5%	5	+	+	-	S	1	+	'	151		3	20	10	ا مرام		
M = Missing		6	9	5	12	12	5	10	3	(H)	Y	10	81	10			
Calculations:		7	15	1/6	15	14	8	16	7	16	13	(1	114	10			
Initials: LB		8	-	U \			<u> </u>	-, -		VV	1	+	11.	, -			
Date: ဖြဖြစ		Total	24	25	32	210	13	30	11	30	31	28	250	iO			

EIGHP 47 No org. in cup.

Ceriodaphnia dubia Chronic Reproduction Assay

STUDY# CONC Day A B C D E F G H I J SUM SU 27578 0 +<	
CLIENT: 1 + + + + + + + + 0 /0 ESS Laboratories- Kendall Station 3 + + + + + + + + + + + + 0 0 0	2
ESS Laboratories- 2 + + + + + + + + - 0 9 Kendall Station 3 + + + + + + + + + + 0 0	
Kendall Station 3 + + + + + + + + + + 0 C)
CAMPLE:	1
SAMPLE: 25% 4 6 5 5 4 5 6 4 + 35 9	
Effluent 5 7 4 + + + + 16 8 + 14 9	769
DILUENT: 6 + H 3 3 7 10 (8) + 8 43 9	70%
RW 7 5 11 14 13 9 14 17 14 18 115 9	
Cerio Data 8	
source: MSR 🕱	
MHR & 0 + + + + + + + 0 /0	2
collected: 1 + + + + + + + + + + 0 1	5
previous pm 2	
test day am 10 3 + + + + + + + + + + 0 (0	3
Day 0 0 60 107 110 50% 4 4 3 5 3 + + + 6 7 6 34 10	367.
Time: 1515 50% 5 6 + + - + + 3 + + 9 7	
Day 1 06 108 6 5 9 3 + + 17 5	
Initial: EH 7 9 11 9 + 5 34 5	
Day 2 06/09 Time: 1115	_
Initial: NP Total 10 3 19 23 0 12 0 14 7 6 94 5	_
Day 3 Olelic iw Time: 1340	<u> </u>
Initial: HK 1 + + + + + + + + 0 10	
Day 4 of full (2 + - + + + + - 0 7 Time: 1035	
	1 67
Day 506/12/16 Time: 1720 100% 4 - + 611 0 0	6%
Initial: So]
Day 6 0/6 1/3 Time: 1/10	
Initial: EH 7 Day 7 6/14 8 V	
Time: 1430	_
Day 8 Time: Initial: 1 0 1	
LEGEND: 2	
+ = Live 3	
- = Dead 4	
or = Male 5	
M = Missing 6	
Calculations: 7	
Initials: (B	

CETIS Summary Report

Report Date: Test Code: 23 Jun-16 10:10 (p 1 of 2) 27578Cd | 18-0234-8200

								est Code:		2/5/600 1	0-0234-020		
Ceriodaphnia	7-d Survival a	nd Repr	oduction Te	st						EnviroSy	stems, Inc		
Batch ID: Start Date: Ending Date: Duration:	14-7292-9042 07 Jun-16 15:1 14 Jun-16 14:3 6d 23h	5	Test Type: Protocol: Species: Source:	, ,			E	nalyst: Diluent: Brine: Age:	Lisa Bordon Receiving V Not Applicat	Vater			
Sample ID: Sample Date:	12-7462-8134 07 Jun-16 12:0	10	Code: Material:	27578 Treated Groun	d Water			Client: ESS Laboratory Project: Second Quarter WET Compliance T					
Receipt Date: Sample Age:	07 Jun-16 13:1 3h (2 °C)	0	Source: Station:	Kendall Green MA0004898; E	• •	lity							
Multiple Com	parison Summ	ary											
Analysis ID	Endpoint		Comp	arison Method			NOEL	LOE	L TOEL	TU	PMSD		
08-6353-0674	7d Proportion S	Survived	Fishe	r Exact/Bonferro	ni-Holm Tes	it	50	100	70.71	2	n/a		
00-9659-3401	Reproduction		Bonfe	rroni Adj t Test			25	50	35.36	4	35.0%		
Point Estimat	e Summary												
Analysis ID	Endpoint		Point	Estimate Meth	od		Level	%	95% L	CL 95% UC	L TU		
04-5679-4858	7d Proportion S	Survived	Linea	r Interpolation (I	CPIN)		EC25	32.5	21.7	52.2	3.079		
19-0396-1803	Reproduction		Linea	r Interpolation (I	CPIN)		IC25	29.4	15.2	36	3.4		
Test Acceptat	oility					TAC	Limits						
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Uppe	. Ove	lap Decis	ion			
04-5679-4858	679-4858 7d Proportion Survived Cont				1	0.8	>>	>> Yes Passes			Criteria		
08-6353-0674	3-6353-0674 7d Proportion Survived Cont			ol Resp	1	8.0	>>	>> Yes Passes			Criteria		
00-9659-3401	Reproduction		Contr	ol Resp	24.3	15	>>	Yes	Passe	s Criteria			
19-0396-1803	•		Contr	ol Resp	24.3	15	>>	Yes	Passe	s Criteria			
00-9659-3401	Reproduction		PMS)	0.35	0.13	0.47	Yes	Passe	s Criteria			
7d Proportion	Survived Sum	nmary											
Conc-%	Code	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std I	Err Std D	ev CV%	%Effec		
0	MS	9	1.000	1.000	1.000	1.000	1.000	0.00	0.000	0.00%	0.00%		
0	RW	10	1.000	1.000	1.000	1.000	1.000	0.00	0.000	0.00%	0.00%		
6.25		9	0.889		1.000	0.000	1.000	0.11	1 0.333	37.50%	11.11%		
12.5		10	1.000		1.000	1.000	1.000	0.000		0.00%	0.00%		
25		10	0.900		1.000	0.000	1.000	0.10		35.14%	10.00%		
50		10	0.500		0.877	0.000	1.000	0.16		105.41%			
100	····	10	0.000	0.000	0.000	0.000	0.000	0.00	0.000		100.009		
Reproduction	•	_						_					
Conc-%	Code	Coun					Max	Std I			%Effec		
0	MS	9	30.7	26.4	35	25	40	1.87		18.30%	0.00%		
0	RW	10	24.3	19.3	29.3	11	36	2.23	7.06	29.04%	20.76%		
6.25		9	20.9	13.8	28	0	31	3.07	9.2	44.04%	31.88%		
12.5		10	25	19.7	30.3	11	32	2.32	7.35	29.39%	18.48%		
25		10	20.9	14.1	27.7	0	35	3	9.49	45.42%	31.85%		
50		10	9.4	3.86	14.9	0	23	2.45	7.75	82.43%	69.35%		

0

0

0

0

100

10

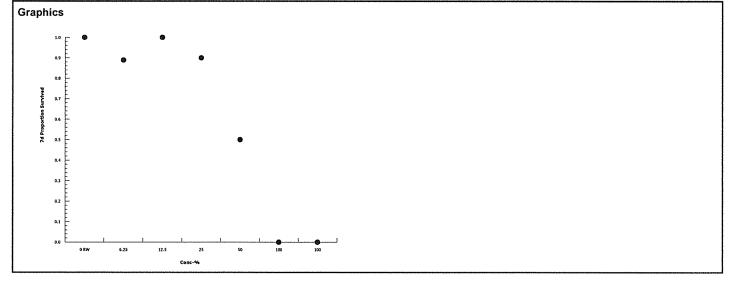
100.00%

Report Date: Test Code: 23 Jun-16 10:10 (p 2 of 2) 27578Cd | 18-0234-8200

rvival a	nd Reprodu	uction Test							EnviroSy	stems, Inc.
ed Deta										
ode	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
//S	1.000	1.000	1.000	1.000		1.000	1.000	1.000	1.000	1.000
RW.	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1.000		0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000
	0.000	0.000	1.000	1.000	0.000	1.000	1.000	1.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ode	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
//S	25	40	38	26		25	30	27	34	31
RW.	21	36	34	23	11	26	23	23	20	26
	31		0	26	26	15	21	21	28	20
	24	25	32	26	13	30	11	30	31	28
	13	20	22	20	21	30	35	22	26	0
	10	3	19	23	0	12	0	14	7	6
	0	0	0	0	0	0	0	0	0	0
		red Detail Code Rep 1 MS 1.000 1.000 1.000 1.000 0.000 0.000 Code Rep 1 MS 25 RW 21 31 24 13 10	Code Rep 1 Rep 2 AS 1.000 1.000 RW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 Code Rep 1 Rep 2 AS 25 40 RW 21 36 31 24 25 13 20 10 3	Red Detail Code Rep 1 Rep 2 Rep 3 AS 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 Code Rep 1 Rep 2 Rep 3 AS 25 40 38 AW 21 36 34 31 0 24 25 32 13 20 22 10 3 19	Red Detail Code Rep 1 Rep 2 Rep 3 Rep 4 AS 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 Code Rep 1 Rep 2 Rep 3 Rep 4 AS 25 40 38 26 RW 21 36 34 23 31 0 26 24 25 32 26 13 20 22 20 10 3 19 23	Red Detail Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 AS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Red Detail Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 AS 1.000 1.000 1.000 1.000 1.000 1.000 RW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Red Detail Rep 1	Red Detail Rep 1	Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 AS 1.000 </td

Report Date:

23 Jun-16 10:10 (p 1 of 1) 27578Cd | 18-0234-8200


Test Code:

Ceriodaphnia	7-d Survival and Rep	roduction T	est		EnviroSystems, Inc.
Analysis ID: Analyzed:	08-6353-0674 23 Jun-16 10:10	•	7d Proportion Survived STP 2xK Contingency Tables	CETIS Vers	
Sample ID:	12-7462-8134	Code:	27578	Client:	ESS Laboratory
Sample Date	: 07 Jun-16 12:00	Material:	Treated Ground Water	Project:	Second Quarter WET Compliance Tes
Receipt Date	: 07 Jun-16 13:10	Source:	Kendall Green Energy Facility		
Sample Age:	3h (2 °C)	Station:	MA0004898; Effluent		

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU
Untransformed	C>T	50	100	70.71	2

Fisher Exact/	Bonf	erroni-Holm Test				
Control	vs	Group	Test Stat	P-Type	P-Value	Decision(α:5%)
Receiving Wa	ter	6.25	0.474	Exact	1.0000	Non-Significant Effect
		12.5	1.000	Exact	1.0000	Non-Significant Effect
		25	0.500	Exact	1.0000	Non-Significant Effect
		50	0.016	Exact	0.0650	Non-Significant Effect
		100*	0.000	Exact	2.7E-05	Significant Effect

Data Summar	у						
Conc-%	Code	NR	R	NR + R	Prop NR	Prop R	%Effect
0	RW	10	0	10	1	0	0.0%
6.25		8	1	9	0.889	0.111	11.1%
12.5		10	0	10	1	0	0.0%
25		9	1	10	0.9	0.1	10.0%
50		5	5	10	0.5	0.5	50.0%
100		0	10	10	0	1	100.0%

Ceriodaphnia 7-d Survival and Reproduction Test

Report Date: Test Code: 23 Jun-16 10:10 (p 2 of 2) 27578Cd | 18-0234-8200

 	٠.	•	_	•	1			•	-	
 		-	-		-					
	F	n	vi	re	٠s	ive	tem	•	ln	

Analysis ID: 19-0396-1803 Endpoint: Reproduction CETIS Version: CETISv1.9.2

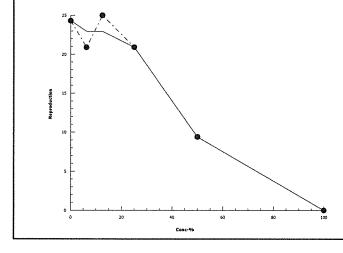
Analyzed: 23 Jun-16 10:10 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Sample ID:12-7462-8134Code:27578Client:ESS LaboratorySample Date:07 Jun-16 12:00Material:Treated Ground WaterProject:Second Quarter WET Compliance Tes

Receipt Date: 07 Jun-16 13:10 Source: Kendall Green Energy Facility

Sample Age: 3h (2 °C) Station: MA0004898; Effluent

Linear Interpolation Options


X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Log(X+1)	Linear	685249	200	Yes	Two-Point Interpolation

Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
IC25	29.4	15.2	36	3.4	2.775	6.577

Reproduction	Summary								
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	RW	10	24.3	11	36	2.23	7.06	29.00%	0.0%
6.25		9	20.9	0	31	3.07	9.2	44.00%	14.0%
12.5		10	25	11	32	2.32	7.35	29.40%	-2.88%
25		10	20.9	0	35	3	9.49	45.40%	14.0%
50		10	9.4	0	23	2.45	7.75	82.40%	61.3%
100		10	0	0	0	0	0		100.0%

Graphics

Report Date: Test Code: 23 Jun-16 10:10 (p 1 of 1) 27578Cd | 18-0234-8200

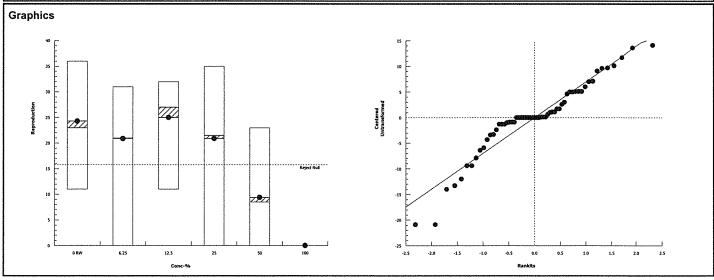
Ceriodaphnia	7-d Survival and	Reproduction Test		EnviroSystems, Inc.
Analysis ID:	00-9659-3401	Endpoint: Reproduction	CETIS Version:	CETISv1.9.2

Analyzed: 23 Jun-16 10:10 Analysis: Parametric-Multiple Comparison Official Results: Yes

Sample ID:12-7462-8134Code:27578Client:ESS LaboratorySample Date:07 Jun-16 12:00Material:Treated Ground WaterProject:Second Quarter WET Compliance Tes

Receipt Date: 07 Jun-16 13:10 Source: Kendall Green Energy Facility

Sample Age: 3h (2 °C) Station: MA0004898; Effluent


Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	PMSD
Untransformed	C>T	25	50	35.36	4	35.04%

Bonferroni Adj t Test										
Control vs	Conc-%	Test Stat	Critical	MSD	DF P-Type	P-Value	Decision(α:5%)			
Receiving Water	6.25	0.905	2.32	8.75	17 CDF	0.7410	Non-Significant Effect			
	12.5	-0.191	2.32	8.52	18 CDF	1.0000	Non-Significant Effect			
	25	0.927	2.32	8.52	18 CDF	0.7184	Non-Significant Effect			
	50*	4.06	2.32	8.52	18 CDF	4.0E-04	Significant Effect			

ANOVA Table							
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)	
Between	1573.38	393.346	4	5.84	7.3E-04	Significant Effect	
Error	2962.29	67.3247	44				
Total	4535.67		48	A CAN DE PROMISE DE LA CANADA DE			

Distributional 1	Tests				
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance Test	1.22	13.3	0.8741	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.955	0.936	0.0615	Normal Distribution

Reproduction	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	RW	10	24.3	19.3	29.3	23	11	36	2.23	29.04%	0.00%
6.25		9	20.9	13.8	28	21	0	31	3.07	44.04%	14.04%
12.5		10	25	19.7	30.3	27	11	32	2.32	29.39%	-2.88%
25		10	20.9	14.1	27.7	21.5	0	35	3	45.42%	13.99%
50		10	9.4	3.86	14.9	8.5	0	23	2.45	82.43%	61.32%
100		10	0	0	0	0	0	0	0		100.00%

Report Date: Test Code:

23 Jun-16 10:10 (p 1 of 2)

27578Cd | 18-0234-8200

Ceriodaphnia	7-d Survival and Re	production To	est		EnviroSystems, Inc.
Analysis ID:	04-5679-4858	Endpoint:	7d Proportion Survived	CETIS Version:	CETISv1.9.2
Analyzed:	23 Jun-16 10:10	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Sample ID: 12-7462-8134 Code: 27578 Client: **ESS Laboratory**

Sample Date: 07 Jun-16 12:00 Material: Treated Ground Water Project: Second Quarter WET Compliance Tes Receipt Date: 07 Jun-16 13:10

Kendall Green Energy Facility Source:

Sample Age: 3h (2 °C) Station: MA0004898; Effluent

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Log(X+1)	Linear	1480612	200	Yes	Two-Point Interpolation

Point Estimates

Graphics

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC25	32.5	21.7	52.2	3.079	1.915	4.6

7d Proportion	Survived Sur	nmary									
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	RW	10	1.000	1.000	1.000	0.000	0.000	0.00%	0.0%	10	10
6.25		9	0.889	0.000	1.000	0.111	0.333	37.50%	11.1%	8	9
12.5		10	1.000	1.000	1.000	0.000	0.000	0.00%	0.0%	10	10
25		10	0.900	0.000	1.000	0.100	0.316	35.10%	10.0%	9	10
50		10	0.500	0.000	1.000	0.167	0.527	105.00%	50.0%	5	10
100		10	0.000	0.000	0.000	0.000	0.000		100.0%	0	10

20

Ceriodaphnia dubia - Blocking by Parentage Tracking Sheet

ESI#: 27578

CLIENT: ESS Kendall

START DATE: 06/07/16

START TIME: 1515

INITIAL: EH

COLUMN added to	C. dubia AD board #	ULT USED cup#
Α	MGR H22	18
В	MGR 423	1F
С	4	1E
D		20
Е	\bigvee	2A
F	MHR 539	12
G		11-1
Н		26
I		iO
J	<u> </u>	3C

Pimephales promelas 7 DAY CHRONIC ASSAY

STUDY: 27578		CLIEN ESS L	NT: .aborat	ories		SAMPI Effluen		dall Sta	ation	DILUE Recei	ENT: ving Wa	ater		FISH/I	ЗАТСН:	
				NUMB	ER OF	SURVIV	ORS				OLD I	DISSOL	VED O	XYGEN	(mg/L)	
CON	REP	0	1	2	3	4	5 路	¹¹³ 6	7	1	2	3	4	5	6	7
	Α	10	10	10	10	10	10 ⁶⁶	8	6	7.0	7.7	5.7	6.4	7.2	6.9	4.2
MSR	В	10	10	10	10	10	10	10	10	7.5	7.6	5.7	6.10	7.1	6.8	6.4
	С	10	10	16	10	10	9	9	9	T.H	7.5	6.0	7.3	7.1	6.7	٦. ي
	D	16	10	16	10	10	10	10	10	7.4	7,4	5.6	7.2	7.2	6.7	6.6
	Α	10	10	16	10	10	9	9	9	7.3	7.3	5.6	5.6	7.0	(O.(O	6.4
RW	В	10	10	10	9	9	9	9	9	7.3	7.0	5.5	5.1	(0.7	6,5	6.8
IVV	С	10	10	10	10	9號	9	9	9	7.1	6.8	5.7	5.0	6.4	(0.0	6.7
	D	10	10	10	10	8	8	8	$\mathcal {E}$	7.1	(0.(0	6.0	6.0	6.4	6.7	4.9
	Α	10	10	10	9	8	8	8	8	7.0	Ġ	6.6	6.0	6.2	(0,8	٦. يا
6.25%	В	10	10	10	8	Jos		·	6	7.0	6.4	١، ي	5.9	6.2	(0.9	عا. عا
0.25%	С	10	10)0		9800		9	9	6.9	6.1	6.5	5.7	6.2	6.8	8. يا
	D	10	10	10	8	8	8	8	8	6.9	(0.0)	6.2	5.9	6.3	6.8	1. [
	Α	10	10	10	10	10	10	10	10	9.0	5.9	5.9	5.9	6.4	6.9	6.9
12.5%	В	10	10	10	10	10	10	10	9		(0.0)	5.8	5.6	(0.1	6.8	6.9
12.5%	С	10	10	10	10	10	10	10	10	69	6.1	ا، عا	5.9	5,7	6.6	7.0
	D	10	10	10	10	10	10	10	10	6.9	6.0	5.9	5.6	5.5	6.0	7.1
	Α	10	10	10	8	8	8	00	8	6.9	O.0	6.0	5.5	5.4	(O.H	5,5
25%	В	10	10	10	10	9	9	9	9	6.8	6.0	5.7	5.4	5,7	6.4	6.2
2576	С	10	10	10	10	9	9	9	9	6.9	6.0	5.7	5.4	5.9	0.0	6.5
	D	10	10	10	10	10	10	10	9	(6.8)	6,0	5,9	5,5	5.8	6.5	6.7
	Α	10	0	10	10	10	96	14 8 9 14 8 9	9	6.7	6.2	6.2	6.0	5.9	(0.5	6.6
50%	В	10	10	10	10	10	10	10	10	6.7	6,2	5.6	5.8	(O.Q)	6.6	6.6
	С	10	10	10	10	9	8	8	8	6.7	6.4	5.1		5.8	6.0	6.6
	D	10	10	10	9	9	9	8	8	(0.7	6.4	4.2	4.6	56	6.7	7.2
	Α	10	10	10	10	<u>iO</u>	9	9	9		6.3	1		7	6,6	6.7
100%	В	16	10	10	10	10	10	10	9		6.3	6.3	6.2	5.9	67	6.8
10070	С	10	10	10	10	10	10	9	0		6.2	6.3	6.2		68	6.7
	D	lo	9	9	9	8	18	8	8	6.8	6.2	6.4	5.9	6.2	6.9	6.7
INC TE	MP:	26	26	26	76	26	26	26	26							
DATE:		polonlico	04/08/10	06/09	06/10	06/11	00/12	06/13	06/14							
TIME:		1550	1	0905	1125	0905	0940	0855								
INITIAL	s:	EH	HK	EH	NP	HK	田	时	NP							

(10) HK 6/11

Fish killed in transit

@His - Beaker spilled, 8 recovered.

STUDY: 27578 CLIENT: Kendall

PROJECT:

ASSAY: PP7DCR

TASK: Dry Weight Data - Balance Output File BALANCE: Ohaus Discovery Balance Model DV215CD

Serial #: 112402024313

	Date / Init:	06/22/16 DD	06/07/16 CFS	Duplic	cates
Sample	Rep	Total Wt (mg)	Tare Wt (mg)	Total Wt (mg)	Tare Wt (mg)
Lab	A	13.76	9.71	13.76	9.67
Lab	В	17.53	10.67		
Lab	С	18.67	12.17		
Lab	D	18.22	11.96		
RW	Α	15.99	9.06		
RW	В	16.2	9.79		
RW	С	17.27	11.03		
RW	D	16.49	10.98		
6.25%	Α	14.09	8.58	14.09	8.55
6.25%	В	14.09	8.82		
6.25%	С	14.61	8.43		
6.25%	D	16.92	10.88		
12.5%	Α	14.09	8.22		
12.5%	В	14.06	7.73		
12.5%	С	16.58	8.91		
12.5%	D	17.46	10.53		
25%	Α	15.45	10.22	15.44	10.17
25%	В	14.98	8.61		
25%	С	15.34	9.91		
25%	D	17	10.35		
50%	Α	12.87	6.62		
50%	В	16.99	10.13		
50%	С	15.32	8.86		
50%	D	16.78	11.07		
100%	Α	14.21	8.25	14.2	8.23
100%	В	13.38	8.94		
100%	С	16.97	12.34		
100%	D	18.35	12.6		

CETIS Summary Report

Report Date:

23 Jun-16 10:19 (p 1 of 2)

Test Code: 27578Pp | 18-8396-9745

Fathead Minn	ow 7-d Larval S	Survival	and Growt	h Test						EnviroSys	tems, Inc.
Batch ID:	14-9509-2673		Test Type:	Growth-Surviva	l (7d)			Analyst:	Lisa Bordonaro		
Start Date:	07 Jun-16 15:50	0	Protocol:	EPA/821/R-02-	013 (2002)		1	Diluent:	Receiving Water	er	
Ending Date:	14 Jun-16 10:1	5	Species:	Pimephales pro				Brine:	Not Applicable		
Duration:	6d 18h		Source:	ARO - Aquatic	Research O	rganisms, N	IH ,	Age:	<48 		
Sample ID:	12-7462-8134		Code:	27578					ESS Laboratory	,	
1 7	07 Jun-16 12:00		Material:	Treated Ground Water				Project:	Second Quarter	r WET Comp	oliance Tes
1 '	07 Jun-16 13:10	0	Source:	Kendall Green	٠,	lity					
Sample Age:	4h (2 °C)		Station:	MA0004898; E	fluent						
Multiple Com	parison Summa	ary									
Analysis ID	Endpoint			parison Method			NOE			TU	PMSD ✓
I .	7d Proportion S			ett Multiple Com			100	> 100	n/a	1	18.0%
t	Mean Dry Biom	_		ett Multiple Com			50	100	70.71	2	17.2%
11-2541-1922	Mean Dry Weig	mt-mg	Dunne	ett Multiple Com	panson res		100	> 100	n/a	1	18.5%
Point Estimat											
Analysis ID	Endpoint		Point	Estimate Meth	od		Level		95% LCL	95% UCL	TU 🗸
09-4531-3794	Mean Dry Biom	ass-mg	Linea	Interpolation (IC	CPIN)		IC25	>100	n/a	n/a	<1
Test Acceptal	bility					TAC L	imits				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Uppe	r Overl	ap Decision		
07-6554-1410	7d Proportion S	Survived	Contr	ol Resp	0.9	0.799999	>>	Yes	Passes C	riteria	
1	Mean Dry Biom	•		ol Resp	0.645	0.25	>>	Yes	Passes C		
1	Mean Dry Biom	_		ol Resp	0.645	0.25	>>	Yes	Passes C		
I .	Mean Dry Weig	_		ol Resp	0.716 0.172	0.25	>>	Yes Yes	Passes C		
	Mean Dry Biom		PIVISL	, 	0.172	0.12	0.3	res	Passes C	ntena	
1	Survived Sum	mary									
Conc-%	Code	Coun		95% LCL	95% UCL	Min	Max	Std E		CV%	%Effect
0	MS	4	0.912	0.725	1.000	0.750	1.000			12.95%	0.00%
0	RW	4	0.900	0.770	1.000	0.800	1.000			9.07%	1.37%
6.25 12.5		4 4	0.775 0.975	0.575 0.895	0.975 1.000	0.600 0.900	0.900			16.24% 5.13%	15.07% -6.85%
25		4	0.875	0.895	0.955	0.800	0.900			5.71%	-0.05% 4.11%
50		4	0.875	0.723	1.000	0.800	1.000			10.94%	4.11%
100		4	0.800	0.575	1.000	0.600	0.900			17.68%	12.33%
	mass ma Sumr			0.0.0							12.0070
Conc-%	mass-mg Sumr Code	-	t Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	%Effect
0	MS	Coun 4	0.617		0.741	0.506	0.686			12.62%	0.00%
0	RW	4	0.645	0.493	0.741	0.506	0.693			10.40%	-4.46%
6.25	1744	4	0.575	0.506	0.751	0.531	0.693			7.49%	6.82%
12.5		4	0.67	0.546	0.794	0.587	0.767			11.62%	-8.58%
25		4	0.592	0.481	0.703	0.523	0.665			11.75%	4.06%
50		4	0.632		0.708	0.571	0.686			7.58%	-2.42%
100		4	0.519	0.397	0.642	0.444	0.596			14.84%	15.81%
Mean Dry We	ight-mg Summa	ary	· · · · · · · · · · · · · · · · · · ·								
Conc-%	Code	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	%Effect
0	MS	4	0.677		0.74	0.626	0.722			5.86%	0.00%
0	RW	4	0.716		0.776	0.689	0.77	0.018		5.22%	-5.72%
6.25		4	0.752		0.895	0.687	0.878			11.95%	-11.06%
12.5		4	0.688	0.569	0.806	0.587	0.767			10.85%	-1.52%
25		4	0.676	0.581	0.771	0.603	0.739			8.85%	0.20%
50 100		4	0.725	0.636 0.469	0.814	0.686 0.493	0.808			7.71% 18.24%	-7.10% 2.33%
100		4	0.661	0.409	0.854	U.483	0.772	0.060	J U. 121	10.24%	2.33%

Report Date: Test Code: 23 Jun-16 10:19 (p 2 of 2) 27578Pp | 18-8396-9745

Fathead Minn	ow 7-d Larval	Survival an	d Growth T	est		EnviroSystems, Inc.
7d Proportion	Survived Det	ail				
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	MS	0.750	1.000	0.900	1.000	
0	RW	0.900	0.900	1.000	0.800	
6.25		0.800	0.600	0.900	0.800	
12.5		1.000	0.900	1.000	1.000	
25		0.800	0.900	0.900	0.900	
50		0.900	1.000	0.800	0.800	
100		0.900	0.900	0.600	0.800	
Mean Dry Bio	mass-mg Deta	ail				
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	MS	0.506	0.686	0.65	0.626	
0	RW	0.693	0.641	0.693	0.551	
6.25		0.551	0.527	0.618	0.604	
12.5		0.587	0.633	0.767	0.693	
25		0.523	0.637	0.543	0.665	
50		0.625	0.686	0.646	0.571	
100		0.596	0.444	0.463	0.575	
Mean Dry Wei	ight-mg Detail					
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	MS	0.675	0.686	0.722	0.626	
0	RW	0.77	0.712	0.693	0.689	
6.25		0.689	0.878	0.687	0.755	
12.5		0.587	0.703	0.767	0.693	
25		0.654	0.708	0.603	0.739	
50		0.694	0.686	0.808	0.714	
100		0.662	0.493	0.772	0.719	

50

100

Report Date:

23 Jun-16 10:19 (p 1 of 3)

•	•						Test	Code:	2	7578Pp 18	3-8396-974
Fathead Minnow	7-d Larval S	urvival an	d Growth	Test						EnviroSy	stems, Inc
Analysis ID: 07-	-6554-1410	En	dpoint:	7d Proportion S	Survived		CET	IS Version	: CETISv1	.9.2	
Analyzed: 23	Jun-16 10:1	9 A n	alysis:	Parametric-Cor	ntrol vs Trea	tments	Offic	cial Result	s: Yes		
Sample ID: 12-1	7462-8134	Co	de: 2	27578			Clie	nt: ES	S Laboratory	/	
Sample Date: 07	Jun-16 12:00) Ma	aterial:	Freated Ground	d Water		Proj	ect: Se	cond Quarte	r WET Com	pliance To
Receipt Date: 07	Jun-16 13:10) So	urce:	Kendall Green	Energy Faci	lity					
Sample Age: 4h ((2 °C)	Sta	ation:	MA0004898; E	ffluent						
Data Transform		Alt Hyp					NOEL	LOEL	TOEL	TU	PMSD
Angular (Corrected)	C > T					100	> 100	n/a	1	18.02%
Dunnett Multiple	Comparison	Test									
Control vs	Conc-%		Test St	at Critical	MSD DF	P-Type	P-Value	Decision	η(α:5%)		
Receiving Water	6.25		1.81	2.41	0.219 6	CDF	0.1423	•	nificant Effec		
	12.5		-1.31	2.41	0.219 6	CDF	0.9928	-	nificant Effec		
	25		0.424	2.41	0.219 6	CDF	0.6799	_	nificant Effec		
	50		0.366	2.41	0.219 6	CDF	0.7039		nificant Effec		
	100		1.42	2.41	0.219 6	CDF	0.2539	Non-Sigr	nificant Effec	t ————	
ANOVA Table											
Source	Sum Squ	ares	Mean S	Square	DF	F Stat	P-Value	Decision			
Between	0.202044		0.04040		5	2.44	0.0740	Non-Sigr	nificant Effec	t	
Error	0.297704		0.0165	391	18	and a					
Total	0.499748				23						
Distributional Tes	its										
Attribute	Test				Test Stat	Critical	P-Value	Decision	n(α:1%)		
Variances	Bartlett Ed	quality of V	ariance Te	est	2.92	15.1	0.7116	Equal Va	ariances		
Distribution	Shapiro-W	/ilk W Nor	mality Test		0.945	0.884	0.2099	Normal [Distribution		
7d Proportion Su	rvived Sumi	mary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0	RW	4	0.900	0.770	1.000	0.900	0.800	1.000	0.041	9.07%	0.00%
6.25		4	0.775	0.575	0.975	0.800	0.600	0.900	0.063	16.24%	13.89%
12.5		4	0.975	0.895	1.000	1.000	0.900	1.000	0.025	5.13%	-8.33%
25		4	0.875	0.795	0.955	0.900	0.800	0.900	0.025	5.71%	2.78%
50		4	0.875	0.723	1.000	0.850	0.800	1.000	0.048	10.94%	2.78%
100	·····	4	0.800	0.575	1.000	0.850	0.600	0.900	0.071	17.68%	11.11%
Angular (Correcte	d) Transfor	med Sum	mary								
Conc-%	Code	Count	Mean	95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effec
0	RW	4	1.25	1.06	1.44	1.25	1.11	1.4	0.0605	9.66%	0.00%
6.25		4	1.09	0.849	1.33	1.11	0.886	1.25	0.075	13.79%	13.16%
12.5		4	1.37	1.24	1.5	1.41	1.25	1.41	0.0407	5.94%	-9.51%
25		4	1.21	1.1	1.33	1.25	1.11	1.25	0.0355	5.85%	3.08%
EO		4	4 22	0.000	4 45	1 10	4 4 4	4 44	0.0706	44 040/	0.669/

1.41

1.25

1.11

0.886

0.0726

0.0857

4

4

1.22

1.12

0.988

0.85

1.45

1.4

1.18

1.18

2.66%

10.33%

11.91%

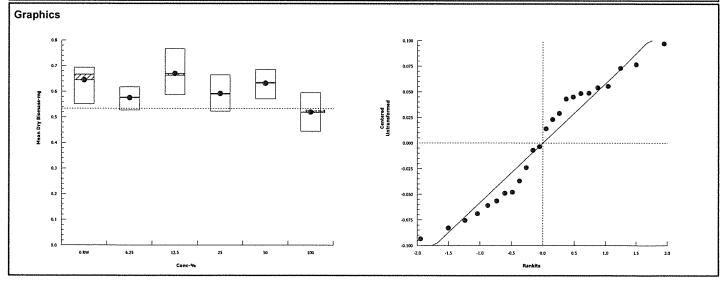
15.27%

Report Date: Test Code: 23 Jun-16 10:19 (p 2 of 3) 27578Pp | 18-8396-9745

Fathead Minnow 7-d Larval Survival and Growth Test EnviroSystems, Inc. Analysis ID: 07-6554-1410 Endpoint: 7d Proportion Survived **CETIS Version:** CETISv1.9.2 Analyzed: 23 Jun-16 10:19 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 76/ -0.15 Conc-%

Report Date: Test Code:

23 Jun-16 10:19 (p 3 of 3) 27578Pp | 18-8396-9745


Fathead Minn	ow 7-d Larval Surv	ival and Growt	th Test	EnviroSystems, I							
Analysis ID: Analyzed:	15-5936-1280 23 Jun-16 10:19	Endpoint: Analysis:	Mean Dry Biomass-mg Parametric-Control vs Treatments		ETIS Versi	ion: CE ults: Yes	ΓΙSv1.9.2				
Sample ID:	12-7462-8134	Code:	27578	CI	ient:	ESS Labo	ratory				
Sample Date:	07 Jun-16 12:00	Material:	Treated Ground Water	Pr	oject:	Second Q	uarter WET	Compliance Tes			
Receipt Date:	07 Jun-16 13:10	Source:	Kendall Green Energy Facility		-						
Sample Age:	4h (2 °C)	Station:	MA0004898; Effluent								
Data Transfor	m Al	t Hyp		NOEL	LOEL	TOE	L TU	PMSD			
Untransformed	ı C	> T		50	100	70.7	1 2	17.21%			

Dunnett Multiple	Comparison Test							
Control vs	Conc-%	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(α:5%)
Receiving Water	6.25	1.51	2.41	0.111	6	CDF	0.2249	Non-Significant Effect
	12.5	-0.551	2.41	0.111	6	CDF	0.9464	Non-Significant Effect
	25	1.14	2.41	0.111	6	CDF	0.3614	Non-Significant Effect
	50	0.273	2.41	0.111	6	CDF	0.7407	Non-Significant Effect
	100*	2.71	2.41	0.111	6	CDF	0.0275	Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.059594	0.0119188	5	2.81	0.0481	Significant Effect
Error	0.0764804	0.0042489	18			
Total	0.136074		23	harf a time the end		

Distributional Te	sts				
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance Test	1.5	15.1	0.9126	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.939	0.884	0.1538	Normal Distribution

Mean Dry Bio	mass-mg Sum	mary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	RW	4	0.645	0.538	0.751	0.667	0.551	0.693	0.0335	10.40%	0.00%
6.25		4	0.575	0.506	0.644	0.577	0.527	0.618	0.0215	7.49%	10.80%
12.5		4	0.67	0.546	0.794	0.663	0.587	0.767	0.0389	11.62%	-3.94%
25		4	0.592	0.481	0.703	0.59	0.523	0.665	0.0348	11.75%	8.16%
50		4	0.632	0.556	0.708	0.636	0.571	0.686	0.0239	7.58%	1.95%
100		4	0.519	0.397	0.642	0.519	0.444	0.596	0.0385	14.84%	19.41%

Fathead Minnow 7-d Larval Survival and Growth Test

Report Date:

23 Jun-16 10:19 (p 1 of 1) 27578Pp | 18-8396-9745

Test Code:

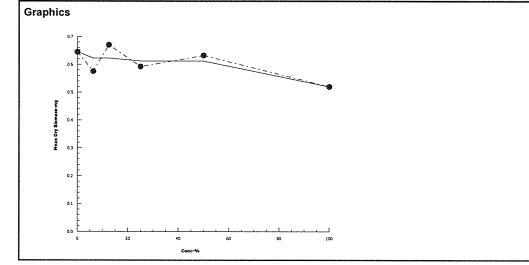
EnviroSystems, Inc.

-			·			
	Analysis ID:	09-4531-3794	Endpoint:	Mean Dry Biomass-mg	CETIS Version:	CETISv1.9.2
	Analyzed:	23 Jun-16 10:19	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes
1						The state of the s

 Sample ID:
 12-7462-8134
 Code:
 27578
 Client:
 ESS Laboratory

Sample Date: 07 Jun-16 12:00 Material: Treated Ground Water Project: Second Quarter WET Compliance Tes

Receipt Date: 07 Jun-16 13:10 Source: Kendall Green Energy Facility Sample Age: 4h (2 °C) Station: MA0004898; Effluent


Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Log(X+1)	Linear	1525288	200	Yes	Two-Point Interpolation

Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
IC25	>100	n/a	n/a	<1	n/a	n/a

Mean Dry Bio	mass-mg Sum	mary			С	alculated Va	riate		
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	RW	4	0.645	0.551	0.693	0.0335	0.0671	10.40%	0.0%
6.25		4	0.575	0.527	0.618	0.0215	0.0431	7.49%	10.8%
12.5		4	0.67	0.587	0.767	0.0389	0.0779	11.60%	-3.94%
25		4	0.592	0.523	0.665	0.0348	0.0696	11.80%	8.16%
50		4	0.632	0.571	0.686	0.0239	0.0479	7.58%	1.95%
100		4	0.519	0.444	0.596	0.0385	0.0771	14.80%	19.4%

Aquatic Research Organisms

DATA SHEET

02ppAR0000716

I. Organism History
Species Pinephales Prenelas
Source: Lab reared Hatchery reared Field collected
Hatch date 6/5/16 Receipt date
Lot number 06 01 16 FH Strain ARO
Brood origination <i>PA OH</i>
II. Water Quality
Temperature 24 °C Salinity — ppt D.O. SAT ppm
pH 7.9 su Hardness 2/20 ppm Alkalinity 2/90 ppm
III. Culture Conditions
Freshwater Saltwater Other
Recirculating Flow through Static renewal X
DIET: Flake food Phytoplankton Trout chow
Artemia Rotifers x YCT Other East Det
Prophylactic treatments:
Comments:
IV. Shipping Information
Client: # of Organisms 350 [†]
Client: $\frac{257}{25}$ # of Organisms $\frac{350^{+}}{250^{-}}$ Carrier: $\frac{257}{25}$ Date shipped $\frac{677/16}{25}$
Biologist:
PO BOX 1271 HAMPTON NH 03843-1271 (603) 926-1650 <u>AROFISH@AOL.COM</u>

FRESHWATER CHRONIC ASSAY - C. dubia and P. promelas NEW WATER QUALITIES

STUDY	1:27	578	CLIE	NT: E	SS Lab	oratori		MPLE: Effluent - DILUENT: Idall Station Receiving Water									
		N	EW DIS	SOLVE	OXYGI	EN (mg/l	L)						NEW p	oH (SU)			
CONC	REP	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
MSR	А	8.3	8.6	8.7	8,4	8.6	8.2	8.2		7.80	7.79	7.90	7.99	7.95	7,94	7.85	
RW	А	6.8	6.3	8.0	8.1	8.5	8,3	8.3		7.12	7.00	7.44	7,30	7.46	ユゖ エ	7.51	
6.25%	А	6.7	7.0	8,0	8.1	8.4	84	8.5		7.14	7.03	7,42	7.33	7.46	7.44	7.48	
12.5%	А	6,8	6.9	7.9	8.2	8.3	8.4	8,6		7.10	7.03	7.42	7.35	7.47	7.44	7.44	
25%	А	6.8	7.1	7.9	8.1	8,3	8.4	8,6			7.02					7.44	
50%	Α	7.0	6.8	7.9	8.2	8.z	8.4	8.6			6.99				7.44	743	
100%	Α	7.1	6.4	8.0	8.1	8.z	8.6	J		7.35 6.87 7.47 7.41 7.40 7.41 -							
agent and the same		NEW S	PECIFIC	COND	UCTIVIT	Υ (μΜΗ(OS/CM)			NEW TEMPERATURE (°C)							
00110	I						1	1									
CONC	REP	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
MSR	REP A	199	1 200		190	190	190	6 185	7	0 23	1 22	21	3 23	23	5 24		7
	1	199		202	190	190	190		7							6 23 21	7
MSR	Α	199 1153	206 1189	202 1164	190 1243	190 1401	190 1350	185 1352	7	23	22	21	23	23	24	23	7
MSR	A	199 1153 1208	206	202 1164 1254	190 1243 1268	190 140 1446	190 1350 1421	185 1352 1433	7	23 25	22 22	21	23 23	23 25	<u>H</u>	23 21 21	7
MSR RW 6.25%	A A	199 1153 1208 1211	206 1189 1210	202 1164 1254 1250	190 1243 1268 1272	190 140 1446 1451	190 1350 1421 1421	185 1352 1433 1441	7	23 25 25	22 22 22	21 22 22	23 23 23	23 25	<u>Д</u> Д	23 21	7
MSR RW 6.25% 12.5%	A A A	199 1153 1208 1211 1222	206 1189 1210 1210	202 1164 1254 1250 1260	190 1243 1268 1272 1273	190 1446 1446 1449	190 1350 1421 1421 1414	185 1352 1433 1431 1439	7	23 25 25 20 25	22 22 22 22	21 22 22 22	23 23 23 23	23 25 24 24	五 五 五 <th>23 21 21 21</th> <th>7</th>	23 21 21 21	7
MSR RW 6.25% 12.5% 25%	A A A	199 1153 1208 1211 1222 1230	206 1189 1210 1210 1207	202 1164 1254 1250 1260 1268	190 1243 1268 1272 1273	190 1446 1446 1449 1449	190 1350 1421 1421 1414 1465	185 1352 1433 1431 1439	7	23 25 25 25 25 25	2222222222	21 22 22 22 22	23 23 23 23 23	23 25 24 24 24	14 25 26 27 28 29 20 20 21 22 23 24 25 26 27 28 29 20 20 21 22 23 24 25 26 27 28 29 20 20 21 22 24 25 26 27 28 29 20 20 20 20 21 22 23 24 <th>23 21 21 21 21</th> <th>7</th>	23 21 21 21 21	7
MSR RW 6.25% 12.5% 25% 50%	A A A A	199 1153 1208 1211 1222 1230	206 1189 1210 1200 1207 1206 1200	202 1164 1254 1250 1260 1268	190 1243 1268 1272 1273	190 1446 1446 1449 1449	190 1350 1421 1421 1414 1465	185 1352 1433 1431 1439	7	23 25 25 25 25	22 22 22 22 22 22	21 22 22 22 22 22	232323232323	23 25 24 24 24	五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五	23 21 21 21 21 21 21	7
MSR RW 6.25% 12.5% 25% 50%	A A A A	199 1153 1211 1222 1230 1271 26	206 1189 1210 1200 1207 1206 1200	202 1164 1254 1250 1260 1268 1276	190 1243 1268 1272 1273 1279 1288	190 1446 14451 1449 1434 1408	190 1350 1421 1421 1414 1405	185 1352 1433 1439 1434 1439 1434 1439	7	23 25 25 25 25	22 22 22 22 22 22	21 22 22 22 22 22	232323232323	23 25 24 24 24	五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五	23 21 21 21 21 21 21	7
MSR RW 6.25% 12.5% 25% 50% 100%	A A A A	199 1153 1208 1211 1222 1230 1271 26 colorlic	206 1189 1210 1207 1206 1206 26	202 1164 1254 1250 1260 1276 26 06/09	190 1243 1268 1272 1273 1279 1288 26	190 1446 14451 1449 1434 1408 26	190 1350 1421 1421 1414 1405 1399 26 0612	185 1352 1433 1439 1434 1439 1434 1439	7	23 25 25 25 25	22 22 22 22 22 22	21 22 22 22 22 22	232323232323	23 25 24 24 24	五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五	23 21 21 21 21 21 21	7

	DAY 0 (START)								DAY (1 st REI	<u>ル</u> NEWAL)			DAY (2 ND REI	¹ ન્ NEWAL)	
	METALS	TOC	ALK	HARD	AMM	TS/TDS	TRC	ALK	HARD	AMM	TRC	ALK	HARD	AMM	TRC
EFF							40.02				40.02				(0.02
RW															

Did 1 st Renewal sample cause ≥50% mortaility? If "YES" put into circulation TOC and METALS I	Yes oottles.	X	No _≠	X De la la
Did 2 nd Renewal sample cause ≥50% mortallity? If "YES" put into circulation TOC and METALS I	Yes oottles.	<u> </u>	No_	and the same of th

C. dubia Old Water Qualities

STUDY	':2757 <i>8</i>	CLIEN	T: ESS	Laborato	100000000000000000000000000000000000000	ora Oiu v		**		endall Sta	ation	DILUENT:	RW
CONC	DAY	рН	DO	TEMP	SPEC	CONC	DAY	рН	DO	TEMP	SPEC	INC TEMP	INIT
	1	8,15	8.4	22	234		1	8.05	8.4	23	1302	20	EH
	2	8.41	9.1	21	249		2	815	8.1	21	1354	26	DD
	3	8.54	8.7	23	256		3	8.19	8.4	23	1757	26	HK
	4	8.05	8,4	23	230	25%	4	8,08	8.5	23	1462	26	HK
MSR	5	8,34	1.7	23	219	2070	5	8.08	7.3	23	1590	26	DD
	6	8:23	8.0	23	230		6	8.02	8.0	23	1630	26	
	7	8.25	8.5	23	753		7	8.04	8.1	23	1690	کا	DG
	8						8						
	1	8.05	8.3	23	1231		1	8.05	83	13	1317		
	2	8.22	8.9	21	1294		2	8.19	8.8	21	1357		
	3	8.37	8.6	23	1529		3	8.21	8.4	23	1855		
RW	4	8.01	8.4	23	1451	50%	4	8.09	8.5	23	1461		
	5	8.09	7.4	23	1589	0070	5	8.12	7,4	22	1567		
	6	8.03	8.0	23	1483		6	800	8.0	23	1328		
	7	8. \$ 600	-8.b	23	1641		7	8. oy	8,3	23	1635		
	8						8	·					
	1	70.8	8,5	23	1303		1	8.13	8.3	23	1361		
	2	8.18	8.8	21	1379		2	8.32	8,9	21	1354		
	3	8,28	8.5	23	1628	40004	3	8.21	8.2	23	1943		
6.25%	4	8,02	8.3	23	1468	100%	·4	9.09	8.4	23	1453		
	5	8,09	7,3	(કાર્જી માત	७।५		5					E10 A11	organier
	6	8.01		~	1570		6					m 100%	Dead
	7	8. <i>03</i>	81	23	1692		7					00	an
	8	*				200000000000000000000000000000000000000	8	September 2000 Control of the Contro	SINGLE AND ADDRESS OF THE PARTY				-
	1	8.04 HO.8	8.5		1290	71.4	1						
	2	8.16	8.7	21	1345		2			100			
		8.23	8.5	23	1702		3						
12.5%	4	8,06	8,3	23	1469		4						
	5	8.09	7.3	23	1630		5						
	6	8.01	8,0	23	1590		6						
	7	क्षान	8/1	23	1692		7						
	8				101		8.			1.0			

GBHK4114 tempondspec.con. overlooked for 6.25% on day 5 EDHE 6/11 pH probe 197 139 used at w@station I on 6/11/16, Day 4 for old waterqualities,

P. prome/as CHRONIC ASSAY - OLD WATER QUALITIES

STUDY	TUDY: 27578 CLIENT: ESS Laboratories SA										t	DILU	ENT: F	₹W		
		OLE) Temp	peratur	e (°C)					***************************************	OL	.D pH	(SU)			
CONC	REP	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
MSR	Α	24	23	24	23	24	24	24	7.46	٦.٦١	7.40	7.52	7.55	٦٬٢٦	7.24	
RW	Α	24	24	24	24	24	24	24			7.31			7,31	. 4	OUK.
6.25%	Α	24	24	24	24	24	24	24	7.51	たらて	7.53	7.40	7.44	7.39	7.57	·
12.5%	Α	24	24	24	24	24	24	24	7.53	7.51	7.45	7,43	7.37	7.44	7.61	
25%	Α	24	24	24	24	24	24	24	7,53	7.40	7.43	7.38	7.40	7,44	7,39	
50%	Α	24	24	24	24	24	2H	24	7,55	7.55	7.46	7.42	7.47	7.52	7.50	
100%	Α	24	24	24	24	24	24	24	7.62	7.55	7.32	7,44	7.48	7.59	7.52	
Ol	LD SPE	CIFIC	COND	UCTI	/ITY (¡	OHML	S/CM)									
CONC	REP	1	2	3	4	5	6	7								
MSR	Α	212	227	228	23	220	214	225								
RW	Α	1142	1231	1333	1350	ルフコ	IHHI	1545								
6.25%	Α	1231	1317	1359	1371	1563	15)6	1582								
12.5%	Α	1288	1343	1442	1420	1575	15/2	1652								
25%	Α		1334					I								
50%	Α	1	1337													
100%	Α		1360													
INC TEN	ЛР:		20	26		26	26	25								
DATE:		aoloshu	00/02	00 10	06[11	adra	aol13	06/14								
TIME:			0845													
INITIALS	3:	田	时		HK		EH	HK								

PREPARATION of DILUTIONS

STUDY: 27578 CLIENT: ESS Laboratories SAMPLE: Effluent - Kendall Station

SPECIES: C. dubia & P. promelas TEST: chronic renewal DILUENT: Receiving Water

START	Day: ⊖		Day: i			
Diluent: RW	Sample: ∈ ₀	,D0	Sample: E _{o,Do}			
Concentration	Vol Eff	Final Vol	Vol Eff	Final Vol		
MSR	0	1200	0	1000		
RW	O		0			
6.25%	75		62.5			
12.5%	150	and the second	125			
25%	300		250			
50%	600	The second secon	500			
100%	1200	V	1000			

l	Date / Time / Init	Salanzeteum	YCT	Brine
	Date / Time / Time	Selenasuum	101	Shrimp
Day 0	06/07/16/1420 EH	A-4274	F121	A-41090
Day 1	06/08/16 1035 HK	A-4274	F121	A 4090
	06/09/16 0950 EH			A-41/90
	06/10/16 1205 NP		FIZI	A-4690
Day 4	06/11/10 0945 HK		F171	A-4090
Day 5		A-4274	F121	A4090
Day 6		Å-4274	F121	A4190
Day 7				

1 st Renewal	Day: 1		Day: 3		Day:		
Diluent: RW	Sample:E ₁	, D ,	Sample: E,	, D,	Sample:		
Concentration	Vol Eff Final Vol		Vol Eff	Final Vol	Vol Eff	Final Vol	
MSR	٥	1000	0	ì 0 00			
RW	0		0	i			
6.25%	62.5		62.5				
12.5%	125		125				
25%	250		Z50				
50%	500		500				
100%	1000	Ų	1600	4			

L	Lab Water ID:									
Day 0	27555 W-1019									
Day 1	27555 W-1019									
Day 2	27565 W-1119									
Day 3	27601 @ W 6116									
Day 4	27601 W-1022									
Day 5	27601 W·1022									
Day 6	27(001 W-1022									
Day 7										

2 nd Renewal	Day: 4		Day: 5		Day: 🕝		Day:		
Diluent: RW	Sample: E _{z D2}		Sample: F2D2		Sample: E	L.D2	Sample:		
Concentration	Vol Eff	Final Vol	Vol Eff	Final Vol	Vol Eff	Final Vol	Vol Eff	Final Vol	
MSR	0	1000	0	1000	0	1000			
RW	0	l	0	١	0				
6.25%	62.5		62.5		62.5				
12.5%	125		125		125		· ·	\	
25%	250		250		250			\ <u></u>	
50%	500		500		500				
100%	1000	4	1000	U	1000	Ų			

METER USE RECORD FRESHWATER CHRONIC

C. dubia & P. promelas

STUDY: 2757	8	CLIENT: I	ESS Labora	atories		SAMPLE:	Effluent - I	Kendall Sta	ation										
		C	LD WATE	R QUALITI	ES - P. pro	melas													
	0	1	2	3	4	5	6	7	8										
Water Quality Station #			1	l	l														
Initials I EH HK HK EH EH HK																			
OLD WATER QUALITIES - C. dubia																			
	0	1	2	3	4	5	6	7	8										
Water Quality Station #		Ì	1	l	1	1		1	,-1										
Initials		버	DD	HK	HK	DD	EH	756	##BG										
		NE	EW WATE	R QUALITIE	ES - Both S	Species			OG PU										
	0	1	2	3	4	5	6 1	7	8										
Water Quality Station #		Ì			l		1												
Initials	터	HK	EH	HK	NP	버	EH												
Date	outroloo	06/08/10	06/09	06/10	6/11	06/01/2		90/14	lolatio										
QEH 001/2																			
Water Qualit	tv Station #	1 \	Mater Oual	ity Station :	42	OMMENTS													

Water Quality S	Station #1	Water Quality	Station #2	COMMENTS
DO meter#	24	DO meter#	23	
DO probe #	618 94/3	DO probe #	94	
pH meter#	1097	pH meter#	470	
pH probe#	140	pH probe #	(38	
S/C meter#	Y5130D	S/C meter#	१८५१०	
S/C probe #	V	S/C probe#		

pH probe #139 for WQ Station 1 beginning on day 4 for old water qualities of c. dubla.

SAMPLE RECEIPT RECORD FOR CHRONIC TOXICITY EVALUATIONS

	CLIENT:	
SAMPLE RECE	IPT INFORMATION	
Start Sample	First Renewal	Second Renewal
06107/16 1310	06/08/16 1415	06/10/16 1240
, KC	4C	ВС
Fed Ex UPS Client Courier ESI	Fed Ex UPS Client Courier ESI	
HK	NP	NP
06/07/16 1400	06/08/16 1435	06/10/16 1320
SAMPLE CONDIT	TION INFORMATION	
(es) or No	(Yes) or No	Yes or No
Yes or No	Yes or No	Yes or No
(es) or No	Yes or No	Yes or No
Yes or No	(Ŷes) or No	Yes or No
Yes or No	(Yes) or No	Yes or No
Yes or No	(Yes) or No	Yes or No
Yes (NA) No	Yes (NA) No	Yes WA No
(es or No	Yes or No	Yes or No
2,5℃	2.0°c	Z.&&
Yes or No	Yes or No	Yes or No
Yes or No	(Yes) or No	Yes or No
See COC	See COC.	See COC
	Start Sample Ou 07 12 13 O	SAMPLE RECEIPT INFORMATION Start Sample First Renewal OLD 10 13 0 OLD 10 1415 KC Fed Ex UPS Client Courier ESI Fed Ex UPS Client Courier ESI HK NP OLD 10 11 11 1400 OLD 10 1435 SAMPLE CONDITION INFORMATION (es) or No Yes) or No Yes or No

P:\GENERAL PROJECTS\FORMS\LABFORMS\Sample Receipt Record - Chronic 2013.wpd

EnviroSystems, Inc. 1 Lafayette Road Hampton, NH 03842

Voice: 603-926-3345 FAX: 603-926-3521

27578

ESI Job No:

ERR Date: 06/07/16 Time: 1316 CDPP7DCR StartSample CDPP7DCR StartDiluent Filter Analyses Requested N=Not needed Special Instructions: ESS Laboratory - Kendall Station 000 Task: Date: Matrix Filter A
S=Solid N=Not needed S
W=Water F=Done in field L=Lab to do z Z Joe Sirbak email: Jsirbak@thielsch.com P0604 Water Water Field Preser-vation Project Manager: Project Number: 4 C 4 0 Received at Lab By: Project Name: Received By: Type (P/G/T) CHAIN OF CUSTODY DOCUMENTATION ۵. ۵ Container Size (mL) (3750 3750 Time: 13.70 ž က 9 Grab or com-posite (G/C) Address: Hopkinton, MA 01748 S Sampled (By MAYA 10/6-7/6 12:00-1200 MINM 508-435-9912 Address: 5 Avenue D Contact: Joe Sirbak Date: 6/7/ 6/10/10/11:30 Date Time Sampled Sampled Fax: 508-435-9244 x4720 002 Receiving Water Start ESS Laboratory NPDES
ler Your Field ID:
(must agree with container) Joe Sirbak Joe Sirbak 001 Effluent Start Relinquished By: Relinquished By: Protocol: NF Lab Number Invoice to: Report to: Client: (assigned by lab) Voice:

Comments: Marine chronic assays will be conducted if effluent PPT is >1 at time of collection.

2,5°C

Page 56 of 59

ŏ

Page

May 2016

Sample Delivery Group No:

ESI Job No: 27578

EnviroSystems, Inc. 1 Lafayette Road Hampton, NH 03842

Voice: 603-926-3345 FAX: 603-926-3521

CHAIN OF CUSTODY DOCUMENTATION

ERR Time: 1415 CDPP7DCR 1stRenewal Sample CDPP7DCR 1stRenewal Diluent Filter Analyses Requested N=Not needed Special Instructions: ESS Laboratory - Kendall Station 000 Task: F=Done in field L=Lab to do z z Joe Sirbak email: Jsirbak@thielsch.com Matrix S=Solid | W=Water P0604 Water Water 10. P Field Preser-vation Project Manager: Project Number: 4 C Received at Lab By: 4 C Project Name: Received By: Type (P/G/T) ۵. ۵. Container Size (mL) (3750 3750 Date: (C/8/16 Time: /4/5 Grab or com-posite (G/C) Address: Hopkinton, MA 01748 Time: S Sampled By NEVIL 12:45 MINAN MNM 20021 21/3/91 508-435-9912 Address: 5 Avenue D Contact: Joe Sirbak Date Time Sampled Sampled Fax: 004 Receiving Water First Renewal 508-435-9244 x4720 003 Effluent First Renewal ESS Laboratory Your Field ID: (must agree with Joe Sirbak Joe Sirbak container) NPDES Relinquished By: Relinquished By: Invoice to: Report to: Lab Number Protocol: Voice: (assigned Client: by lab)

Comments: Marine chronic assays will be conducted if effluent PPT is >1 at time of collection.

7.0%

ಕ

Page

June 2016

Sample Delivery Group No:

Voice: 603-926-3345 FAX: 603-926-3521

EnviroSystems, Inc. 1 Lafayette Road Hampton, NH 03842

回 S M

CHAIN OF CUSTODY DOCUMENTATION

ESI Job No: 77578

ERR Date: 16/10/16 Time: 1240 CDPP7DCR 2ndRenewal Sample CDPP7DCR 2ndRenewal Diluent Matrix Filter Analyses Requested\(S=Solid N=Not needed Special Instructions: W=Water F=Done in field L=Lab to do ESS Laboratory - Kendall Station 000 Task: Date: Received By Jan D. Klin z z Joe Sirbak email: Jsirbak@thielsch.com P0604 Water Water Field Preser-vation Project Manager: Project Number: 4 C 4 C Received at Lab By: Project Name: Type (?/G/T) ۵. ۵ Container Size (mL) (3750 3750 Date: (e/16//10 Time: 1246 9 ŝ Sampled Grab By or composite (G/C) S Address: Hopkinton, MA 01748 J Time: NNIN 2000 11/01/01 10/10/4/ 1/00 WINM 508-435-9912 Address: 5 Avenue D Contact: Joe Sirbak Date Time Sampled Sampled Date: Fax: 006 Receiving Water Second Renewal 508-435-9244 x4720 005 Effluent Second Renewal ESS Laboratory NPDES
er Your Field ID:
(must agree with
container) Joe Sirbak Joe Sirbak Relinquished By: Relinquished By: Protocol: NF Lab Number Invoice to: Report to: Client: (assigned by lab) Voice:

Comments: Marine chronic assays will be conducted if effluent PPT is >1 at time of collection.

2.6°C Sage 28 of 59 coc Number: A1013508

₽

Page

June 2016

Sample Delivery Group No:

	Assay Review Checklist
DATE IN:	6616 STUDY#: 27578
DATE DUE:	CLIENT: ESS
	PROJECT: Kindall Station
	ASSAY: PPTDCR CDTDCR

	Project Paperwork Check for Completeness							
	Date	Initials	Comments					
Day 0	06/07/16	EH	- Comments					
Day 1	06/08	时						
Day 2	06/09	DD						
Day 3	06/10	HK						
Day 4	06/11	HK						
Day 5	6/12	D)						
Day 6	06/13	EH	DD old was 6%					
Day 7	06/14	NP	00 SIG WSS (0/B					
Day 8								

Analyst Data Review	Date	Initials	Comments
Chains of Custody Complete	00/21/10	EH	Comments
Sample Receipt Complete	EXPLAINED	<u> </u>	
Organism Culture Sheet(s)			
Bench Sheets Complete (dates, times, initials, etc)		╂═┼═╂	
Water Quality Data Complete			
TRC Values & Bottle Numbers			
Daphnid Calculations Complete			
Weights Reported	20/22/10		
Assay Acceptability Review	06/21/16		

Technical Report Review	Date	Initials	Comments
Statistical Analysis Complete	6/23/16	us	Comments
Statistical Analysis Reviewed	67/08/14	100 h	
Data Acceptability Review	7/6/16	UB.	
Supporting Chemistry Report	NA	UO	
Draft Report	7/0.7/14	rs	
QA Audit/Review Complete	110-1114	U.J	
Final Report Reviewed	07/08/16		
Final Report Printed - PDF	1	1	
Executive Summary / Chems Sent			
Report E-mailed / Faxed			
Report Logged Out / Invoice Sent			
Report Scanned to Archive		4	

P:\GENERAL PROJECTS\FORMS\LABFORMS\\$ Assay Review Checklist.wpd